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Abstract 

Objective: Several diagnostic methods have been used in the identification of mechanical properties of skeletal 

muscle, including myofascial trigger points (MTrPs), but not suitable for daily clinical use. Myotonometry 

offers an easy noninvasive alternative to assess these muscle properties. Nevertheless, previous research has not 

yet studied the mechanical properties of MTrPs by myotonometry. The purposes were (1) to analyze differences 

in the mechanical properties between latent MTrPs and their taut bands by myotonometry, (2) to investigate the 

inter-rater reproducibility of myotonometric measurements and (3) to examine the association between 

myotonometry and passive isokinetic dynamometry. Approach: Fifty individuals (58% male; age 24.6±7.9 

years) with a latent medial MTrP of the right soleus muscle participated. Mechanical properties of this MTrP 

area of soleus muscle and its taut band area were measured using a myotonometer (MyotonPRO). Additionally, 

passive resistive torque and extensibility of triceps surae muscle was assessed using a Kin-Com dynamometer. 

Main results: Statistical analysis indicated higher values for stiffness parameter in the taut band with respect to 

MTrP (P<0.05). The inter-rater reliability of the myotonometric measurements was good for all variables 

(ICC3,1>0.75). Standard error of measurement (SEM) and minimal detectable difference (MDD) indicated small 

measurement error for frequency and stiffness variables (SEM%<10%; MDD95%<20%). Significant fair 

correlations between myotonometric parameters and passive isokinetic parameters were ranged from -0.29 to 

0.48 (P<0.05). Significance: The myotonometer was demonstrated to be a reliable tool and was able to quantify 

differences in the mechanical properties of myofascial tissues. The potential of this method for the assessment of 

myofascial pain syndromes requires further investigation. 

Keywords: muscle stiffness, myofascial tissue, myotonometer, isokinetic dynamometer. 
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1. Introduction  

Myofascial trigger points (MTrPs) are painful areas in skeletal muscle that are associated with a palpable nodule 

within a taut band of muscle fibers (Thomas and Shankar 2013, Simons 2014). These trigger points can exist in 

active or latent states. An active MTrP is characterized by spontaneous and/or mechanical local and/or referred 

pain, while a latent MTrP is a sensitive spot whose pain is only elicited in response to different kinds of 

stimulation, such as compression (Simons and Travell 1999). Nevertheless, the diagnosis of both types of MTrP 

is similar (Celik and Mutlu 2013).  

Several methods have been employed over the years to measure the nature and characteristics of MTrP and taut 

bands. The usual diagnosis of a MTrP consists of the identification of a tender nodule within a taut band through 

palpation and the reproduction of the patient's symptoms in the case of active MTrPs (Simons 2008). However, 

this specific diagnosis depends on the experience, training and skills of the rater (Barbero et al 2013) and 

different inter-rater reliabilities have been reported (Barbero et al 2012, Gerwin et al 1997, Mayoral et al 2017; 

Sha and Heimur 2012). For that reason, today, the objective diagnosis and the quantification of its physical 

characteristics are crucial for improving treatment and clarifying the pathophysiology of MTrPs (Adigozali et al 

2017). 

Muscle stiffness and muscle tone are terms that have been often used interchangeably (Aarrestad et al 2004). 

Muscle tone can be defined as the resistance to passive stretch that reflects neural factors and mechanical or 

viscoelastic properties and is a term frequently used in the clinical context (Aarrestad et al 2004, Gómez-

Soriano et al 2014, Masi and Hannon 2008). On the other hand, muscle stiffness includes active stiffness 

(considering reflex response and voluntary muscle contraction) and passive stiffness (mechanical or viscoelastic 

properties) and is a term more frequently used in biomechanics (Kubo 2014, Kubo et al 2015, Lorentzen et al 

2010, Mirbagheri et al 2001). The impact of MTrPs development on muscle stiffness is still unknown.   

More recently, new tools have been introduced to measure these muscle characteristics, such as magnetic 

resonance elastography, ultrasound elastography and tensiomyography. Magnetic resonance elastography and 

ultrasound elastography are musculoskeletal imaging modalities used to characterize skeletal muscle properties, 

such as tissue passive stiffness (Ballyns et al 2012, Basford and An 2009, Sikdar 2008, 2009, Simons 2008, 

Thomas and Shankar 2013, Turo et al 2015).  However, these sophisticated techniques can cause deformations 

of the evaluated tissue and could alter the mechanical properties of muscle tissues depending on their basal state 

(Adigozali et al 2017, Viir et al 2006). Tensiomyography is also a noninvasive method to measure mechanical 

properties of superficial skeletal muscle, which has been used for the assessment of MTrP and the treatment 

effects (Calvo et al 2016, Calvo-Lobo et al 2017, Dahmane et al 2001). Although all these techniques provide 

objective measures of muscle stiffness characteristics, they are not suitable for clinical use, as they are 

expensive, time-consuming and require specialized staff training (Agyapong-Badu et al 2013). 

Nevertheless, among these methods, the measurement of the resistance to passive stretch using an isokinetic 

dynamometry represents the gold standard assessment of muscle stiffness, being valid for assessing different 

muscle conditions (Boiteau et al 1995, Bressel and McNair 2002, Gomez Soriano et al 2014, Pisano et al 2000, 

Rabita et al 2005) but has never been employed in the evaluation of myofascial tissues stiffness. 

Currently, the myotonometer, a simple, reliable, noninvasive, portable and painless tool, has already proven to 

be objective in measuring mechanical muscle properties. The myotonometer exerts a short mechanical pulse on 

the tested muscle, which causes a short-interval deformation in the muscle. The muscle responds to the 

mechanical stimulus in the form of damped oscillations recorded by an acceleration transducer on the testing 

end. After that, the device simultaneously computes biomechanical parameters of oscillation frequency, stiffness 

and logarithmic decrement (Chuang et al 2012, Lohr et al 2008). An important advantage is that the 

myotonometer setup, data acquisition and real-time results analysis requires considerably less time than other 

tools. Indeed, this method doesn´t require considerable expertise and equipment and it is practical for daily 

clinical use (Fröhlich-Zwahlen et al 2014, Lo et al 2017, Van Deun et al 2014). Moreover, to our knowledge, no 

myotonometric study has reported the reliability and the assessment of MTrPs. 

Therefore, the primary objective of this study was to determine the ability of the myotonometer to identify, 

quantify and compare the mechanical properties of the MTrP within its taut band, as well as to determine the 

inter-rater reliability of this measuring tool. As a secondary objective, the strength of the correlation between 

myotonometric and passive isokinetic parameters was established. 

2. Methods  
2.1. Design 
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The experimental design was a cross-sectional design conducted in accordance with The Declaration of 

Helsinki. This study was approved by the Toledo Hospital Clinical Research Ethics Committee (protocol 

number 134, 11/12/2015). 

All participants completed a unique experimental session in which a myotonometry of a latent MTrP of the 

soleus muscle and its taut band was performed independently by two raters. Furthermore, passive resistive 

torque and soleus muscle extensibility was assessed by a third rater using an isokinetic dynamometer.  

2.2. Participants 

Healthy volunteers from the local community (accepted age range 18–55) with the presence of a latent medial 

MTrP of the right soleus muscle were recruited to participate in this study. All participants provided signed 

informed consent prior to the initiation of assessment procedures.  

The exclusion criteria included: (1) any history of ipsilateral lower limb severe injury or intervention (e.g. 

fracture, surgical intervention); (2) reported pain or musculoskeletal injury in the ipsilateral lower limb in the 

previous month; (3) peripheral or central nervous system neurological disease; (4) altered sensitivity in the 

studied area; and (5) treatment of a myofascial trigger point in the triceps surae muscle during the six months 

previous to the study. 

2.3. Procedures 

All testing took place at the “Hospital Nacional de Parapléjicos” in Toledo (Spain) in a single session. A 

specialized physiotherapist with more than 15 years of experience established the diagnosis of latent medial 

MTrP of the right soleus muscle following the essential criteria proposed by Simons: focal spot muscle 

tenderness and pressure-elicited referred pain pattern not recognized by the participant as a usual pain complaint 

(Simons 2004, 2008). After that, this assessor located by manual palpation and marked on the skin the site of a 

medial MTrP of soleus muscle and a selected point within its taut band, 1 cm distal to the marked medial MTrP. 

Participants were seated in an isokinetic dynamometer (Kin-Com, Chattanooga Group Inc.) with the right hip 

joint at 90˚ of flexion, the right knee slightly flexed at 10º and the right ankle in a neutral position on a footplate 

aligned with the dynamometer rotation axis. The trunk and the right thigh were fixed with straps in order to 

provide stability. A trained physiotherapist, rater 1, conducted the isokinetic dynamometer assessment. 

Myotonometric measurements for inter-rater reliability were carried out by two different qualified raters, rater 2 

and rater 3 within the same session, trained in the use of MyotonPRO technology. 

In addition, another blinded researcher was responsible for entering outcome data on a data sheet.  

2.4. Myotonometric Assessment 

Participants were seated on the Kin-Com dynamometer and they were instructed to completely relax. 

Myotonometric measures to compare the MTrP area and the taut band area were evaluated using the 

MyotonPRO device (Müomeetria AS, Estonia). The myotonometer was held perpendicular and stable in the 

measurement position. An automatically controlled preload (0.18 N) was applied with an automatic mechanical 

impulse to the contact area, with a duration of 15 ms and a constant force of 0.4 N (Bailey et al 2013, Fröhlich-

Zwahlen et al 2014).   

One measurement set of 10 consecutive impulses (scan mode) was completed at each of the two marked points 

(the medial MTrP of the soleus muscle and its taut band) with a time interval of 1 s between each impulse. Mean 

data of each series were accepted if the coefficient of variation of the measurement set was inferior to 3% 

(Bailey et al 2013, Wang 2017). The parameters measured were: i) Oscillation frequency (Hz) as an indicator of 

muscle tone, which characterizes the resting level of tension in the tissue; ii) logarithmic decrement [arbitrary 

unit], which is considered as the ability of the muscle to restore its initial shape after being deformed (is 

inversely proportional to elasticity); and iii) stiffness (N/m), which reflects the tissue resistance to the force 

deforming the muscle (Aird et al 2012, Bailey et al 2013, Chuang et al 2013, Mullix et al 2012, Veldi et al 

2000). 

2.5. Passive Isokinetic Assessment 

During all assessments, participants were asked to remain as relaxed as possible and instructed to press a panic 

button to stop the assessment if it was necessary (Rabita et al 2005).
 
Volunteers performed an initial warm-up 
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trial at each velocity to familiarize themselves with the Kin-com dynamometer (Chattanooga Group Inc.), which 

consisted of 1 set of 5 passive mobilizations at slow velocity (10˚/s) and 1 set of 10 passive mobilizations at fast 

velocity (180˚/s) (Boiteau et al 1995, Gomez-Soriano et al 2014, Rabita et al 2005). Then, the measurement of 

muscle stiffness and muscle extensibility was performed.  

Muscle stiffness was quantified by measuring the passive resistive torque of the triceps surae muscle when a 

stretching was performed during the passive motion of the ankle joint from 35º plantar flexion to 5º dorsiflexion 

at both velocities. The resistive force testing at slow velocity evidences the mechanical response to a muscle 

stretch that does not evoke a reflex response. On the other hand, fast velocity represents total muscle stiffness, 

including reflex-mediated resistance (Boiteau et al 1995, Gomez Soriano et al 2014, Lamontagne et al 1998, 

Rydahl and Brouwer 2004). Peak torque (PT [Nm]) and average torque (AT [Nm]) during ankle dorsiflexion 

were measured during both velocities as variables of the soleus muscle resistance (Gomez Soriano et al 2014). 

The passive extensibility of skeletal muscles can be defined as the ability of a muscle to lengthen without 

muscle activation, being the distance between an initial muscle length and the maximal length, both of which are 

dependent on the passive resistance to the stretch (Gajdosik 2001, Weppler and Magnusson 2010). To evaluate 

extensibility of the triceps surae muscle a passive range of motion (PRoM) at a constant velocity of 10º/s was 

imposed from 35 degrees ankle joint plantarflexion to: (1) the maximum ankle dorsiflexion angle at which the 

soleus muscle generated a resistance of 200 N (AA200 [°]) (Gomez Soriano et al 2014), and (2) the ankle 

dorsiflexion angle corresponding to the participant´s perception endpoint of pain or stretch tolerance (AATol [°]) 

(Weppler and Magnusson 2010). 

2.6. Statistical analysis 

Statistical analysis was performed using SPSS Version 21.0 (IBM Corporation, Armonk, NY) and the 

SigmaPlot Version 11.0 (Systat Software, Canada).  

The Shapiro–Wilk test was performed to determine normal data distribution. An independent Student t-test for 

parametric data or Mann–Whitney U test for nonparametric data was performed to compare myotonometric 

measurements performed at the medial MTrP with those obtained in the taut band of the soleus muscle. 

Between-tissue effect sizes were calculated using Cohen’s d coefficient. An effect size of less than 0.2 reflects a 

negligible mean difference; between 0.2 and 0.5, a small difference; between 0.5 and 0.8, a moderate mean 

difference; and 0.8 or greater, a large difference (Fritz et al 2012). To analyze correlations between the 

myotonometric variables of the medial MTrP of the soleus muscle and the myotonometry variables of the taut 

band, only the assessment made by rater 2 was selected.  

Intra-class correlation coefficients (ICC3,1) with 95% confidence interval (CI) were calculated to determine 
relative reliability. An ICC of less than 0.50 was considered as poor reliability, 0.50 to 0.75 as moderate 

reliability, and greater than 0.75 as good reliability (Portney and Watkins 2009). Absolute reliability indices 

were expressed through standard error of measurement (SEM), SEM%, minimal detectable difference (MDD95) 

and MDD95%. The SEM was estimated as the square root of the mean square error term from the analysis of 

variance (ANOVA) (Hopkins 2000, Stratford and Goldsmith 1997, Weir 2005). The MDD at the 95% 

confidence level was calculated using formula MDD95=SEM*(√2)*1.96 (Fleiss 2007, Portney and Watkins 

2009). SEM and MDD values can be used to determine whether a change in a group or in an individual is 

statistically significantly real (Chuang et al 2013). The smaller the SEM and the MDD, the greater the reliability 

(Atkinson and Nevill 1998, Weir 2005). SEM% (=(SEM/mean)×100), where mean is the mean for all 

observations from both assessments and MDD95% (=(MDD95/mean)×100), where mean is the mean for all 

measurements from both assessments, were used to facilitate interpretation of the results (Flansbjer et al 2005). 

The SEM% of <10% can be considered small and makes it possible to detect small changes that indicate real 

changes for a group of individuals (Chuang et al 2013, Flansbjer et al 2005). The MDD95% of below 30% can 

be considered acceptable and that of below 10% can be considered excellent (Chuang et al 2013, Smidt et al 

2002). 

Pearson correlations (r) with 95% confidence interval (CI) were carried out to analyze the relationship between 

myotonometric measurements of myofascial tissue and passive isokinetic parameters. The strength of 

correlations was interpreted as low (0.00-0.25), fair (0.25-0.50), moderate to good (0.50-0.75) and good to 

excellent (>0.75) (Portney and Watkins 2009).  

Only the assessment made by rater 2 was selected for the correlation analysis with the isokinetic assessment 

data.  
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All statistical analyses were performed considering a P<0.05 significance level. Data are presented as mean ± 

standard deviation. 

3. Results 

Fifty participants were recruited and completed full testing procedures. Characteristics of participants are 

described in Table 1. 

3.1. Myotonometry of the Latent Myofascial Trigger Point and its Taut Band 

The student t-test showed statistically significant differences for stiffness parameter (P<0.05) when comparing 

the medial MTrP area of the soleus muscle with its taut band area for the assessment of both raters.  Differences 

in stiffness for rater 2 and rater 3 were 23.7 N/m and 23.4 N/m, respectively, finding higher values in the taut 

band compared to MTrP for both assessments. No significant differences in frequency and decrement were 

observed in any assessment. 

The mean (SD and CIs) myotonometric variables of the medial MTrP as well as myotonometric variables of the 

taut band are plotted in Table 2. Furthermore, Table 2 shows P values and effect sizes on myofascial tissues 

comparison, where MTrP showed a lower stiffness when compared with the taut band with P<0.05 and effect 

size of d=0.465 and d=0.431 for rater 2 and rater 3 respectively.  

3.2. Inter-rater Myotonometry Reliability 

Table 3 shows ICCs and CIs, SEM (SEM%) and MDD95 (MDD95%) for the latent soleus medial MTrP and its 

taut band. A good general relative reliability (ICC>0.75) was found for both MTrP and taut band measures, with 

a total range of 0.86 to 0.97. The SEM ranged from 0.35 to 0.63 Hz for frequency, from 0.17 to 0.24 for 

decrement and from 11.95 to 13.01 N/m for stiffness. The MDD95 was from 0.97 to 1.74 Hz for frequency, 0.48 

to 0.68 for decrement and 33.12 to 36.07 N/m for stiffness. All the SEM% values were below 10% except for 

decrement parameter. In addition, the MDD95% values for frequency and stiffness variables were below 12%, 

indicating a good absolute reliability.  However this reliability result was not for decrement variable, obtaining 

values greater than 40%. In Figure 1, spaghetti graphs show data for all myotonometric variables, where each 

line connects values for both rater´s measurements.   

3.3. Association between Myotonometry Parameters within MTrP and Taut Band 

Pearson correlation coefficient analysis among myotonometric variables of the medial MTrP of the soleus 

muscle and the taut band are shown in Table 4. There were general positive correlations for frequency, 

decrement and stiffness between the medial MTrP and its taut band.  

3.4. Association between Myotonometry and Passive Isokinetic Dynamometry 

Pearson r values between the myotonometric measurement variables and the passive isokinetic measurement 

variables are presented in Table 5. Correlations between frequency and stiffness myotonometric parameters of 

the medial MTrP and the taut band with respect to passive resistive torque to ankle dorsiflexion at 10°/s and 

180°/s were fair and statistically significant with a range from 0.33 to 0.48 (P<0.05). Decrement parameters of 

the medial MTrP and the taut band were negatively correlated with passive resistive torque to ankle dorsiflexion 

at 10°/s (r= -0.29 to -0.31, P<0.05) and positively correlated with ankle dorsiflexion tolerance angle (r=0.33, 

P<0.05).  

4. Discussion 

This is the first study that measures the MTrP area and its taut band area using a myotonometer device and the 

data support that not only could myotonometry be useful to understand mechanical properties of the myofascial 

tissue, but it could also be useful for the diagnosis and detection of MTrP. The results of the present study 

showed that (1) myotonometry is able to distinguish between the viscoelastic properties of a latent MTrP and its 

taut band, (2) myotonometry is a reliable technique for the assessment of the myofascial tissue and (3) passive 

resistive torque of the triceps surae muscle measured with the isokinetic device positively correlates with the 

“frequency” and “stiffness” and negatively with “decrement” as measured by the myotonometer.  

4.1. Specific Mechanical Properties of the Myofascial Trigger Points 
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This study supports the ability of the myotonometer device to identify and detect differences between the 

mechanical properties of the MTrP and their surrounding myofascial muscle tissue (taut band). 

Interestingly, we found lower values of stiffness in latent soleus medial MTrP compared to its taut band in both 

raters’ assessments. The higher the stiffness value, the more energy needed to modify the shape of the tissue. As 

expected, an excellent association between myotonometric variables of MTrP and taut band existed, considering 

we were evaluating points within the same myofascial structure in the soleus muscle.  

Comparison of all these results with the literature is not possible because there are no reports on the 

myotonometric measurement of myofascial tissue. However, several studies have employed the myotonometer 

to quantify and distinguish other different muscle conditions (Chuang et al 2012, Fröhlich-Zwahlen et al 2014, 

Li et al 2017, Marusiak et al 2010, Van Deun et al 2017, Wang 2017). For example, previous studies focusing 

on the assessment of relaxed, contraction and stretching muscle states established differences in evaluated 

myotonometric parameters in these different muscle conditions (Alamaki et al 2007, Ditroilo et al 2011, 

Gavronski et al 2007, Ikezoe et al 2012). Higher values of frequency, stiffness and elasticity (inversely 

proportional to the decrement) in the contracted and stretched muscles with respect to the relaxed state were 

reported. Older adults present greater stiffness and frequency and lower elasticity than younger adults 

(Agyapong-Badu et al 2015). Findings from studies addressing muscle tone disorders show higher stiffness in 

the myotonometric measurement of skeletal muscle in Parkinson's patients with increased rigidity measured 

clinically (Marusiak et al 2010, Rätsep and Asser 2011) and in people with spasticity compared to healthy 

controls (Rydahl and  Brouwer 2004). Similarly, myotonometric parameters differ depending on the position. 

According to Vain et al (2014) frequency and stiffness characteristics of the medial gastrocnemius muscle were 

significantly higher in the standing position compared to the supine position. Despite all these changes observed 

and the good reliability evidenced (Aird et al 2012, Bizzini and Mannion 2003, Chuang et al 2012, Marusiak et 

al 2010, Zinder and Padua 2011), we should have in mind that some authors are critical of this method 

(Pamukoff et al 2016, Rihvk et al 2010).  

Several methods, such as electromyography, biochemical analysis, tensiomyography or elasticity imaging 

techniques (i.e. magnetic resonance elastography and ultrasound elastography) have been previously proposed 

in the literature to identify the presence and the type (active or latent) of MTrPs and to determine their tissue 

characteristics. A microanalytic and biochemical analysis showed higher concentrations for all analytes and 

lower pH in active MTrP than latent and absent MTrP in the upper trapezius muscle (Sha et al 2005).
 

Furthermore, preliminary results of a nonpublished pathophysiological study show that MTrPs seem to present a 

higher content of glycosaminoglycans (GAGs) (Santafe et al 2015). This research about the composition of 

MTrPs could explain our findings of lower values of stiffness in the MTrP when compared with the surrounding 

area (taut band).  

In this way, using ultrasound vibration sonoelastography, Sikdar et al (2008) found that there were differences 

in the echogenicity and echotexture of the MTrPs related to an increased stiffness both in active and latent 

MTrPs compared to normal tissue. Furthermore, magnetic resonance elastography studies in myofascial 

syndrome revealed that taut bands are indeed stiffer than the surrounding muscle in which they are found (Chen 

et al 2007, 2008, 2016). Another study showed the utility of ultrasound imaging to facilitate the detection of the 

taut band compared to the adjacent normal muscle tissue (Shankar and Reddy 2012). In addition, a recent study 

compared the use of sonoelastography and tensiomyography to detect stiffness differences among active MTrPs, 

latent MTrPs and control points, concluding that only sonoelastographic strain index could detect higher values 

of stiffness at the area of active and latent MTrPs compared to control points (Calvo-Lobo et al 2017). Further 

studies will be required to focus on linking these findings with myotonometric analysis in order to provide a 

better understanding of the mechanical properties of myofascial tissues. 

4.2. Inter-rater Myotonometry Reliability 

In reference to inter-rater reliability, ICCs were very high for all myotonometric outcomes. Moreover, for 

frequency and stiffness parameters, the SEM% values lay below 10% and MDD% values lay below 20%, which 

can be considered small and acceptable. The SEM (SEM%) and MDD95 (MDD95%) of the taut band assessment 

appear to be smaller than those of the MTrP assessment, indicating a more reliable measurement. 

It is important to note that no study has evaluated inter-reliability in myofascial tissues before. Nevertheless, our 

reliability results are in concordance with previous studies using myotonometry in healthy subjects, where ICC 

scores were superior to 0.60 for frequency, decrement and stiffness parameters (Van Deun et al 2016, Viir et al 

2006). In addition, Sakkool et al (2016) found in healthy children good inter-reliability for all measured muscles 

in their study, except for rectus femoris. Our results, except for decrement variable, regarding absolute reliability 
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are in line with other study's results where inter-reliability was studied in healthy subpopulations (Agyapong-

Badu et al 2013; Van Deun et al 2017). However, Van Deun et al (2017) also found lower relative reliability in 

individuals with paratonia (Lohr et al 2008). Similar SEM% and MDD% values but in intra-rater reliability 

studies were found by Lohr et al (2018) and Van Deun et al (2017) in healthy adults and by Chuang et al (2013) 

in subacute stroke patients. It must be emphasized that these authors calculated absolute reliability through a 

different procedure using ICCs to obtain SEM values. 

In scientific literature, myotonometric reproducibility between qualified physiotherapists and novice users was 

also evaluated. Agyapong-Badu et al
 
(2013) demonstrated good and excellent inter-rater reliability in novice 

physiotherapists for the three myotonometric parameters in young and older healthy males. In an infantile 

cerebral palsy study, reliability in novice users was also studied in relaxed and contracted muscles, showing 

moderate to high results with some exceptions (Aarrestad et al 2004). According to these studies, 

myotonometric measurements provide objective data that are not influenced by the experience of the rater 

(Leonard et al 2003) in contrast to other MTrP assessments, such as manual palpation (Barbero et al 2012), 

imaging techniques (Takla et al 2016)  or tensiomyography (Tous-Fajardo et al 2010).  

4.3. Myotonometry as a Measure of Muscle Tone 

Passive resistive torque while stretching a muscle using an isokinetic device is considered as a gold standard to 

measure muscle stiffness and quantify muscle tone disorders (Lamontagne et al 1998, Rabita et al 2005). On the 

other hand, myotonometry provides the assessment by quantifying tissue displacement with respect to 

perpendicular compression force. However, very few studies have compared myotonometric measurements with 

“the resistance to passive movement” paradigm (Leonard et al 2001, Li et al 2017, Rydahl and Brouwer 2004). 

Li et al
 
(2017) reported similar correlation coefficients to our study between the total stiffness at 100°/s 

controlled by a servomotor and the degree of muscle deformation with respect to the compression applied 

perpendicularly to the muscle measured with another myotonometer device. Our significant but “low to 

moderate” correlations could be due to the different concept of muscle stiffness assessment. In the case of 

myotonometry, muscle stiffness is measured by the resistance of a perpendicular force to a determined point 

(Agyapong-Badu et al 2013, 2016). On the other hand, muscle stiffness quantified by isokinetic dynamometry is 

obtained by a longitudinally applied force to all the muscle-tendon and articular structures (Bressel and McNair 

2002). 
  
 

Other studies have revealed the relationship between myotonometry and other muscle stiffness assessment tools. 

Ditroilo et al
 
(2011) studied the influence of the position of the knee joint on contractile and mechanical 

properties of the biceps femoris muscle by myotonometry and tensiomyography, concluding myotonometry 

presents higher sensitivity to detecting changes in the three myotonometric parameters (frequency, decrement 

and stiffness). Nevertheless, no correlations between these methods were realized in this study. In another study 

where muscle stiffness in Parkinson's disease patients was evaluated, myotonometric parameters have been 

shown to correlate with electromyographic recordings in the biceps brachii muscle. So, it is proposed that 

myotonometry could be an alternative method to assess muscle passive stiffness of skeletal muscle (Marusiak et 

al 2012). 

Further research in both myotonometric assessment as well as isokinetic assessment is needed, taking into 

account latent and active MTrPs in different muscles.  

4.4. Limitations 

These results should be interpreted with caution since it should be emphasized that our study was carried out in 

latent MTrPs of asymptomatic adults. Future studies might focus on studying mechanical properties of active 

MTrPs in persons with myofascial pain syndrome. Another relevant point is that a control point outside the taut 

band of the muscle was not included in this study. The comparison of the MTrP and its taut band with a non-

myofascial point would increase the understanding of myofascial tissue properties since the comparison of these 

structures has not yet been studied in scientific literature. Furthermore, the application of the myotonometry 

method on more superficial or deeper muscles should be considered, taking into account the body mass index. 

We haven´t assessed intra-rater reliability but numerous myotonometric studies have showed a moderate to 

good intra-rater reliability within session (Chuang et al 2012, Lidström et al 2009, Lohr et al 2018) and between 

sessions (Aird et al 2012, Bizzini and Mannion 2003, Lohr et al 2018). The absence of myoelectric activities of 

triceps surae muscle has not been confirmed by electromyography and this is another acknowledged limitation. 

Finally, to enhance the applicability and interpretability of the myotonometric measurements, further studies are 

required to provide validity and reference values to examine potential applications of the MyotonPRO device in 

the diagnosis of and regular clinical practice in myofascial syndrome. 
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5. Conclusion 

Our findings suggest that myotonometry is a reliable method to measure latent MTrPs and is able to detect 

differences in their physical characteristics with respect to taut bands. In addition, the moderate but significant 

correlation observed between myotonometry and the resistive torque measured by dynamometry suggests that 

myotonometry could be an easy and cheap tool for measuring muscle stiffness. However, it is necessary to 

establish whether both techniques assess the same stiffness characteristics of the muscle tissues. 
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Table 1. Sample characteristics (n=50). 

 

 

 

 

 

 

 

Table 2. Comparisons of frequency, decrement and stiffness of the medial myofascial trigger point and its taut 

band of soleus muscle. 

 

 

 

Age (years) 24.6 ±7.9 

Sex (male%) 58% 

Height (m) 1.71±0.08 

Weight (kg) 68.64±13.44 

Body Mass Index (BMI) 21.12±7.82 

Values are mean ± SD             

 

Variable Rater 
Myofascial 

Tissue 
Mean ± SD                  Mean difference (95% CI) 

P 

Value 

Effect 

Size (d) 

Frequency 

2 
MTrP 15.87±1.75 

-0.55                                            

(-1.279 to 0,179) 
0.138 0.299 

TB 16.42±1.92 

3 
MTrP 16.17±1.74 

-0.49                                       

(-1.245 to 0.249) 
0.189 0.266 

TB 16.67±2.01 

Decrement 

2 
MTrP 1.19±0.20 

0.012                                                     

( -0.074 to 0.098) 
0.392 0.048 

TB 1.18±0.22 

3 
MTrP 1.22±0.21 

0.045                                                    

(-0.041 to 0.131) 
0.242 0.232 

TB 1.17±0.22 

Stiffness 

2 
MTrP 304.84±48.77 

-23.72                                                       

(-43.981 to -3.459) 
0.022* 0.465 

TB 328.56±53.22 

3 
MTrP 305.52±50.21 

-23.40                                               

(-44.971 to -1.829) 
0.034* 0.431 

TB 328.92±58.19 

Abbreviations: MTrP, medial myofascial trigger point of soleus muscle; TB, taut band of MTrP; SD, standard 

deviation; CI, confidence interval. 

*P<0.05; †P<0.01; ‡P<0.001 
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Table 3. Inter-rater reliability of myofascial tissue myotonometry. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Measurement ICC (95% CI) SEM (SEM%) MDD95 (MDD95%) 

 

Frequency 

MTrP 0.87 (0.78 to 0.92) 0.63 (3.93%) 1.74 (10.89%) 

TB 0.97 (0.95 to 0.98) 0.35 (2.11%) 0.97 (5.85%) 

 

Decrement 

MTrP 0.86 (0.76 to 0.98) 0.24 (20.38%) 0.68 (56.48%) 

TB 0.94 (0.89 to 0.97) 0.17 (14.76%) 0.48 (40.90%) 

 

Stiffness 

MTrP 0.93 (0.88 to 0.96) 13.01 (4.26%) 36.07 (11.82%) 

TB 0.95 (0.92 to 0.97) 11.95 (3.64%) 33.12 (10.08%) 

Abbreviations: MTrP, medial myofascial trigger point of soleus muscle; TB, taut band of MTP; ICC, intraclass 

correlation coefficient; CI, confidence interval; SEM, standard error of measurement; SEM%, SEM divided by 

the mean of all measurements from the two assessments and multiplied by 100%; MDD, minimal detectable 

change; MDD%, MDD divided by the mean of all measurements from the two assessments and multiplied by 

100%. 
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Table 4. Correlation coefficients (r) and CIs between myotonometric measurements of the medial myofascial 

trigger point and its taut band. 

 

Variable 

Frequency  Decrement Stiffness 

MTrP TB MTrP TB MTrP TB 

Frequency 

MTrP - 
0.86

‡ 

(0.70 to 

1.00)
 

0.19 

(-0.09 to 

0.48) 

0.17                     

(-0.12 to 

0.46) 

0.91
‡  

(0.78 to 

1.00) 

0.83
‡
  

(0.67 to 

0.99) 

TB - - 

0.15 

(-0.14 to 

0.43) 

0.10                              

(-0.19 to 

0.38) 

0.79
‡
                   

(0.61 to 

0.97) 

0.95
‡
                   

(0.86 to 

1.00) 

Decrement 

MTrP - - - 
0.81

‡
                        

(0.63 to 

0.98) 

0.23                                   

(-0.05 to 

0.51) 

0.16                                    

(-0.13 to 

0.44) 

TB  - - - 

0.16                                   

(-0.13 to 

0.45) 

0.17                                 

(-0.11 to 

0.46) 

Stiffness 

MTrP - - - - - 
0.79

‡
                    

(0.62 to 

0.97) 

TB - - - - - - 

Abbreviations: MTrP, medial myofascial trigger point of soleus muscle; TB, taut band of MTrP. 

*Significant correlation (P<0.05).  

†Significant correlation (P<0.01). 

‡Significant correlation (P<0.001).  
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Table 5. Correlation coefficients (r) and CIs between myotonometric measurements and isokinetic 

measurements. 

 

Variable PT10 AT10 PT180 AT180 E200 ETol FTol 

Frequency 

MTrP 

0.36
*
 

(0.08 to 

0.63) 

0.42
†       

(0.15 to 

0.68) 

0.40
†                 

(0.13 to 

0.66) 

0.43
†                 

(0.17 to 

0.69) 

-0.16              

(-0,45 to 

0.14) 

-0.03              

(-0.33 to 

0.27) 

0.12     

(-0.18 to 

0.42) 

TB 

0.33
*    

(0.06 to 

0.60) 

0.38
† 

(0.11 to 

0.64) 

0.43
†            

(0.17 to 

0.69) 

0.46
†            

(0.20 to 

0.72) 

-0.17                 

(-0,47 to 

0.12) 

-0.09                  

(-0.39 to 

0.21) 

0.10               

(-0.40 to 

0.20) 

Decrement 

MTrP 

-0.27                  

(-0.55 to 

0.01) 

-0.31
*                  

(-0.58 to  

-0.03) 

-0.16          

(-0.45 to 

0.13) 

-0.15                   

(-0.43 to 

0.14) 

0.11                     

(-0.18 to 

0.41) 

0.33
*                      

(0.05 to 

0.62) 

0.20                      

(-0.09 to 

0.50) 

TB 

-0.31
*               

(-0.58 to           

-0.03) 

-0.29
*                     

(-0.56 to           

-0.01) 

-0.18                    

(-0.47 to           

0.10) 

-0.18                

(-0.46 to           

0.11) 

0.10                    

(-0.20 to           

0.40) 

0.29
*                         

(0.00 to           

0.58) 

0.15                     

(-0.45 to           

0.15) 

Stiffness 

MTrP 

0.40
†      

(0.13 to           

0.67) 

0.45
† 

(0.19 to           

0.71) 

0.45
†             

(0.19 to           

0.71) 

0.48
*                  

(0.23 to           

0.73) 

-0.26               

(-0.55 to           

0.03) 

-0.19                

(-0.48 to           

0.11) 

0.07                   

(-0.37 to           

0.23) 

TB 

0.35
* 

(0.08 to           

0.63) 

0.42
† 

(0.16 to           

0.68) 

0.43
†                

(0.17 to           

0.69) 

0.45
†                 

(0.19 to           

0.71) 

-0.18                   

(-0.48 to           

0.11) 

-0.14            

(-0.44 to           

0.16) 

0.05                   

(-0.25 to           

0.35) 

Abbreviations: MTrP, medial myofascial trigger point of soleus muscle; TB, taut band of MTrP; PT10, peak 

torque at 10°/s; AT10, average torque at 10°/s; PT180, peak torque at 180°/s; AT180, average torque at 180°/s 

;E200, ankle angle corresponding to 200 N; ETol, ankle dorsiflexion tolerance angle; FTol, force required for ETol. 
*
Significant correlation (P<0.05).  

†
Significant correlation (P<0.01). 

‡
Significant correlation (P<0.001). 
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Figure 1.  Individual subject profile (“Spaghetti") plots show the measurements from the two raters for each 

variable: (a) frequency of MTrP (Hz), (b) frequency of TB (Hz), (c) decrement of MTrP, (d) decrement of TB, 

(e) stiffness of MTrP (N/m) and (f) stiffness of TB (N/m). Abbreviations: MTrP, medial myofascial trigger point 

of soleus muscle; TB, taut band of MTrP. 
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