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HIGHLIGHTS:  11 

A QSAR model for predicting the ecotoxicity of NADES has been obtained. 12 

Aliivibrio fischeri is the biomodel selected to obtain the mathematical model. 13 

Several molecular descriptors have been used as independent variables. 14 

Different mixing rules have been explored to construct the independent variables. 15 

 16 

ABSTRACT: 17 

(Eco)toxicological information of Natural Deep Eutectic Solvents (NADES) is scarce and 18 

thus, Quantitative Structure Activity Relationship (QSAR) models are an important tool 19 

to tackle the prediction of toxicity in this case. For that reason, in this manuscript a new 20 

QSAR model for predicting the ecotoxicity of NADES towards Aliivibrio fischeri 21 

biomodel, using mixing rules, is proposed. The main advantage of the method is that the 22 

individual components of the mixtures are molecular modeled and then, a mixing rule is 23 

used, which simplifies the process.  For developing the model, a total of 11 descriptors 24 

for each component have been used: acidity constant, partition coefficient, Van der Waals 25 

volume, Van der Waals surface area, topological polar surface area, solvent accessible 26 

surface area, minimum projection area, maximum projection area, minimum projection 27 

radius, maximum projection radius and molecular weight. The final obtained model 28 

includes topological polar surface area and acidity constant, mechanistically interpreted 29 

as the ability to transport through biological membranes and the negative severe effect of 30 

the pH in the toxicity and biological response of Aliivibrio fischeri bacteria. The OECD 31 

Guidance Document on the Validation of (Quantitative) Structure-Activity Relationships 32 

has been followed to develop the mathematical model. 33 

 34 



KEYWORDS: QSAR, NADES, Aliivibrio fischeri, multiple regression model, 35 

ecotoxicity.  36 



1. Introduction 37 

Currently, the Natural Deep Eutectic Solvents (NADES) are considered as 38 

alternatives to ionic liquids due to their special characteristics. Firstly, NADES are 39 

formed from sustainable raw materials of natural origin (carbohydrates, organic acids and 40 

esters, natural salts or aminoacids, among others). Furthermore, the synthesis process is 41 

easy and cheap (Lapeña   et al., 2018; Liu et al., 2018) and their ability of solubilisation 42 

is quite high (Lores et al., 2017; Tang et al., 2016). All of this interesting features have 43 

made that NADES can be chosen as possible green solvents already available (Dai et al., 44 

2013; Paiva et al., 2014). 45 

The NADES are mixtures that contain, at least, one substance acting as a hydrogen 46 

bond donor (HBD) and another that is an acceptor (HBA). The mixture process is 47 

determined by the formation of a H-bond network that produces a severe decreasing in 48 

the melting temperature, that makes the mixture liquid at room temperature. 49 

The safety of the NADES in terms of toxicity has been studied. However there is 50 

still a field to explore and information provided in the bibliography is scarce and 51 

disjointed. For instance, the cytotoxicity of several NADES containing choline chloride 52 

and sugars or other natural components, has been evaluated in some cell lines such as 53 

PC3, A375, HepG2, HT29, MCF-7, OKF6 or H314 (Hayyan et al., 2015; Hayyan et al., 54 

2016; Mbous et al., 2017). The endpoints analysed and the experimental conditions used 55 

in each case depend on the cell line and equipment used which makes difficult to 56 

extrapolate results.  57 

The toxic information of NADES for the environment is even scarcer, with no 58 

data regarding the toxic effect on crustaceans or algae. However, the ecotoxicity of 59 

NADES towards the marine bacteria A. fischeri has been explored in a greater extent (de 60 

Morais et al., 2015; Macario et al., 2018; Ventura et al., 2014), probably due to the ease 61 



of use, availability and cost-effectiveness of the technique (Abbas et al., 2018), being the 62 

main advantage the homogeneity of the methodology and uniformity in the explanation 63 

of the results. 64 

On the other hand, Quantitative Structure Activity Relationship (QSAR) 65 

methodology is a valuable tool to tackle the prediction of toxicity in case experimental 66 

data is not accessible. The QSAR methods use mathematical functions for relating the 67 

molecular characteristics and properties of the chemicals under study with their biological 68 

activities, including toxic effects (Ghaedi, 2015; Levet et al., 2016; Perales et al., 2017b; 69 

Yousefinejad and Hemmateenejad, 2015; Zuriaga et al., 2018). Thus, QSAR models 70 

could be quite useful for achieving the green and rational design of NADES. However, 71 

NADES are complex mixtures and developing QSAR models for multiple-component 72 

mixtures is not common. In fact, as far as we know, there is only one attempt of modelling 73 

the toxic behaviour of NADES towards the cell line HEK-293 using QSAR methodology 74 

(Ahmadi et al., 2018). In this case, how the composition of NADES has been included in 75 

the model is not been made explicit. In any way, QSAR studies for multicomponent 76 

mixtures are relatively infrequent owing to their complexity: multiple possibilities of 77 

combinations and compositions which make the study difficult to approach and manage 78 

from the point of view of homogeneity, uniformity and universality of the results 79 

obtained. 80 

Thus, the aim of this work is to develop a new, easy and accessible QSAR 81 

methodology for evaluating the (eco)toxicity of NADES using mixing rules (Wang et al., 82 

2018) that allow include any composition by the molecular modelling of individual 83 

components of the NADES. In this case, we have selected the biomodel A. fischeri 84 

because there is a sufficient number of data to develop the study. Furthermore, it must be 85 

said that we have followed the guidelines of the ENV/JM/MONO(2007)2 OECD  86 



Guidance Document on the Validation of (Quantitative) Structure-Activity Relationships 87 

[(Q)SAR] Models (2014). 88 

 89 

2. Material and Methods 90 

The experimental procedure is schematically shown in Figure 1. 91 

 92 

Figure 1: Scheme of the different steps of the experimental procedure. 93 

2.1 Input data gathering, training set and test set 94 

The input ecotoxicological data used has been selected used the following criteria: 95 

• Chemicals are those classified as NADES 96 

• EC50 towards A. fischeri for the NADES are available. Experimental measuring 97 

method is Microtox© toxicity test, exposure time 30 minutes, no acidity 98 

correction made. Input EC50 units have been transformed in mol/L (de Morais et 99 

al., 2015; Macario et al., 2018; Ventura et al., 2014)    100 

A total of 16 different NADES with different combinations of two (A or B) 101 

components (choline, acetic acid, lactic acid, citric acid, glycolic acid, ethylene glycol, 102 

glycerol, urea, 1,2-propanediol, 1-propanol and cholinium, dihydrogen citrate, butanoate, 103 

propanoate, salicylate, bitartrate, dihydrogen phosphate anions) has been selected. The 104 

final number of cases gathered are n = 42. The mathematical model has been constructed 105 

using as dependent variable log EC50 obtained from the bibliographic data towards A. 106 

fischeri bacteria. A total of 11 descriptors for each component, 𝐷𝐷𝐴𝐴,𝐵𝐵, of the mixture have 107 
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been used: acidity constant (pKa), Van der Waals volume (VdWV), Van der Waals surface 108 

area (VdWSA), topological polar surface area (TPSA), solvent accessible surface area 109 

(SASA), minimum projection area (MINPA), maximum projection area (MAXPA), 110 

minimum projection radius (MINPR), maximum projection radius (MAXPR), molecular 111 

weight (MW) and partition coefficient (log P). All molecular descriptors have been 112 

obtained and/or calculated form the following references: ChemAxon Confluence 5.9.11 113 

Copyright © 2003 - 2013 Atlassian Corporation Pty Ltd., ACD/LABS, Chemspider and 114 

(Willighagen et al., 2006).  115 

To build the training set (data used to get the QSAR model) and test set (used for the 116 

external validation), the total input data (n = 42) was randomly separated into a training 117 

set of 38 compounds (90%) and a test set of 4 compounds (10%). 118 

 119 

2.2 Mixing rules 120 

To construct the independent variables, several mixing rules have been proposed 121 

using composition, 𝑋𝑋𝐴𝐴,𝐵𝐵 and descriptors, 𝐷𝐷𝐴𝐴,𝐵𝐵. The mixing rules (𝑅𝑅1-𝑅𝑅8) proposed in this 122 

work are listed in Table 1: 123 

 124 

𝑅𝑅1 = |𝐷𝐷𝐴𝐴 + 𝐷𝐷𝐵𝐵| 𝑅𝑅5 = log  |𝐷𝐷𝐴𝐴 + 𝐷𝐷𝐵𝐵| 

𝑅𝑅2 = |𝐷𝐷𝐴𝐴 · 𝑋𝑋𝐴𝐴 + 𝐷𝐷𝐵𝐵 · 𝑋𝑋𝐵𝐵| 𝑅𝑅6 = log  |𝐷𝐷𝐴𝐴 · 𝑋𝑋𝐴𝐴 + 𝐷𝐷𝐵𝐵 · 𝑋𝑋𝐵𝐵| 

𝑅𝑅3 = |(𝐷𝐷𝐴𝐴 · 𝑋𝑋𝐴𝐴 + 𝐷𝐷𝐵𝐵 · 𝑋𝑋𝐵𝐵)|0.5 𝑅𝑅7 = log  (|(𝐷𝐷𝐴𝐴 · 𝑋𝑋𝐴𝐴 + 𝐷𝐷𝐵𝐵 · 𝑋𝑋𝐵𝐵)|0.5) 

𝑅𝑅4 = (𝐷𝐷𝐴𝐴 · 𝐷𝐷𝐴𝐴 · 𝑋𝑋𝐴𝐴 + 𝐷𝐷𝐵𝐵 · 𝐷𝐷𝐵𝐵 · 𝑋𝑋𝐵𝐵)0.5 𝑅𝑅8 = log  [(𝐷𝐷𝐴𝐴 · 𝐷𝐷𝐴𝐴 · 𝑋𝑋𝐴𝐴 + 𝐷𝐷𝐵𝐵 · 𝐷𝐷𝐵𝐵 · 𝑋𝑋𝐵𝐵)0.5] 

 125 

Table 1: Proposed mixing rules. 𝐷𝐷𝐴𝐴,𝐵𝐵 denotes the descriptor used for each component of 126 

the NADES (A or B) and 𝑋𝑋𝐴𝐴,𝐵𝐵 denotes the mole fraction of each NADES. 127 

 128 



2.3 QSAR, mathematical correlations and statistics 129 

 The literature describes QSAR mathematical models for describing the toxic 130 

behaviour of any biomodel and endpoint using different numbers and natures of 131 

descriptors. Some of them depend exclusively on one variable, mainly lipophilicity 132 

(Mazzatorta et al., 2004), assuming a baseline toxicity mechanism essentially governed 133 

by log P. However, it is also frequent to use molecular descriptors and/or physicochemical 134 

properties in order to improve the models (Chandana and Bijay kumar, 2018; Garcia et 135 

al., 2015; Levet et al., 2013; Perales et al., 2017a). In these cases, multiple linear 136 

regression models (MLR) are also normally used. 137 

In this manuscript, we have chosen this option and the QSAR study has consisted of 138 

getting a MLR to explain the dependent variable (log EC50) in molar units, using the 139 

independent variables described above.  140 

 Due to the large number of possible independent variables (88 different 141 

possibilities, combinations of 8 mixing rules and 11 descriptors), a selection process has 142 

been made. To begin, to check the correlations between the dependent variable log EC50 143 

and the independent variables, a bivariate analysis has been performed. The Pearson 144 

correlation coefficient has been used to assess the correlation; a null hypothesis equal to 145 

zero was contrasted, and an alpha level of 0.05 was used to reject or accept the null 146 

hypothesis. Then, a selection of independent variables for the QSAR model was made on 147 

the basis of the following criterion: there is no correlation among independent variables. 148 

Afterwards, the training set data has been used for getting a multiple regression 149 

mathematical model. R2 has been used to assess the goodness of the model; R2 > 0.8 for 150 

in vivo data can be considered as good (Kubinyi, 1993). Firstly, a simple regression model 151 

was obtained with the most correlated variable. The rest of the variables were added to 152 

this model to construct a multiple regression model if the following criteria were met: 153 



• Coefficients of the new variables were significant, with a p value less than 0.05. 154 

• Independent variables were no collinear. Collinearity has been evaluated using 155 

FIV (criteria FIV < 10) and tolerance with criteria tol > 0.2.  156 

• Residuals were normal. The normality was checked by means of the Shapiro-Wilk 157 

method (a significance level higher than 0.05 indicated normality in residuals) 158 

• Residuals were independent. The runs test has been used to check the 159 

independence of residuals using the mode and median. The selecting criteria for 160 

independence in residuals was that significance of the mode and median was 161 

lower than 0.05. 162 

• The model showed homoscedasticity. The homogeneity of variance was checked 163 

visually with plots of the standardized residuals versus standardized predicted 164 

values. 165 

• There was no overfitting. Adjusted R2 was similar to the goodness of the model 166 

R2. 167 

• Better possible R2. The model was finished if the R2 did not improve and if there 168 

were no more significant variables available, with the significance of the ANOVA 169 

of the model less than 0.05.  170 

Finally, with the aim of detect influential observations in the final model and to take 171 

them into consideration, a search of outliers has been also made. The interquartile range 172 

rule using a multiplier of 1.5 and Cook distances (criteria Di > 1) has been used for 173 

identifying possible outliers in the dependant variables of the final model. 174 

Internal validation of the model has been tested using two methods. The first one is 175 

the leave-one-out (LOO) cross-validation (Hawkins et al., 2003) in which the toxicity 176 

value of each chemical has been predicted by the regression obtained mathematical 177 

function without using the input data of that chemical. The second one is the 178 



bootstrapping (BOO) method (Wehrens et al., 2000) that consists of the simulation of the 179 

model if the cases were selected randomly.  180 

External validation (EXT) was performed using the test set.  181 

The goodness of the model Q2 has been calculated for LOO, BOO and EXT validation 182 

with the following equation: 183 

𝑄𝑄2 = 1 − ∑(𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2

∑(𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2
                (1) 184 

where 𝑦𝑦𝑖𝑖 is the experimental log EC50 independent variable value for the i-th case, 𝑦𝑦�𝑖𝑖 is the 185 

predicted value for the i-th case estimated by using  the mathematical regression model 186 

without using this i-th case and the 𝑦𝑦�𝑖𝑖 (independent variable) is the average experimental 187 

log EC50 value of the training set. 188 

 The statistical analysis was carried out with SPSS 21.0 (licence Universidad San 189 

Jorge). 190 

 The Williams plot  was used to visualize the applicability domain of the model 191 

(standardized residuals versus leverage) (Netzeva et al., 2005). The leverage value of each 192 

chemical from the training set was calculated using the Hat matrix (H) (influence matrix): 193 

𝐻𝐻 = 𝑋𝑋(𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇                                   (2) 194 

where 𝑋𝑋 and 𝑋𝑋𝑇𝑇 are the independent variable matrix and the transposed matrix.  195 

 Two limits were stabilized in the Williams plot; standardized residuals warning 196 

value (three standard deviation units, 3δ) and leverage warning value, ℎ∗, calculated as 197 

follows: 198 

ℎ∗ = 3𝑝𝑝
𝑛𝑛

                                               (3) 199 

where 𝑝𝑝 = 𝑘𝑘 + 1, being 𝑘𝑘 the number of independent variables used in the model, and 𝑛𝑛 200 

is the number of chemicals in the training set. 201 

 202 

3. Results and discussion 203 



In table I (Supplementary Material), the n cases of NADES under study, with their 204 

codes, composition and EC50 values towards A. fischeri are shown. In Table II a-d, the 205 

input matrix containing the dependent variable log EC50 and all the possible independent 206 

variables (combinations of 8 mixing rules and 11 descriptors) for the n cases is shown. 207 

The randomly selection of the training and test set was performed. Test set was 208 

formed with cases 4, 10, 16 and 34. Rest of cases formed the training set. 209 

 The first step is the selection of the independent variables using a bivariate 210 

analysis to check if there is correlation with the dependent variable and there is no 211 

correlation among them. 212 

Then according to the methodology described earlier, the final MLR model 213 

selected is the following: 214 

log 𝐸𝐸𝐸𝐸50 = −5,596 𝑅𝑅7_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0,145 𝑅𝑅2_𝑝𝑝𝑝𝑝𝑝𝑝 215 

(R2 = 0,858;  Adjusted R2 = 0,850;   ANOVA F = 103, p value < 0.001)              (4) 216 

Statistical details of the model can be found in Table 2.  217 

 218 
Table 2. Statistical details of the QSAR multiple regression model obtained (Equation 219 
4). 220 

Model QSAR Coefficients p B Typical error 
𝑅𝑅7_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 -5,596 0,454 <0,001 
𝑅𝑅2_𝑝𝑝𝑝𝑝𝑝𝑝   -0,145 0,019 <0,001 

Model BOO Coefficients p B Typical error 
𝑅𝑅7_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 -5,596 0,350 0,001 
𝑅𝑅2_𝑝𝑝𝑝𝑝𝑝𝑝   -0,145 0,015 0,001 

 221 

The parameter used to evaluate the goodness of the model is R2 = 0,858. In this 222 

case, R2 = 0,850, which can be considered quite enough, taking into account the different 223 

structures and composition of the NADES under study. The adjusted R2 is 0,948, which 224 

is similar to the obtained R2, showing that there is no overfitting. Collinearity evaluation 225 

test showed a value FIV = 4,957 and tol =0,202, which confirmed that the independent 226 



variables used in the final model are not correlated. The Shapiro-Wilk method applied to 227 

test the normality in residuals showed a significance of 0,980, thus residuals can be 228 

considered normal. In Figure 2, the histogram (a) and the normal p-p chart for the 229 

residuals (b) are also shown, for illustrating the normality of residuals. The runs test 230 

confirmed that the residuals can be considered independent (significance of the mode and 231 

median was > 0,001 in the runs test). The homoscedasticity of the model has been checked 232 

and showed in Figure 2 (c).  233 

 234 

   235 

Figure 2: Histogram of frequency of standardized residuals (a), normal p-p chart for 236 

checking normality in residuals (b) and homoscedasticity visual checking: standardized 237 

residuals vs. standardized predicted values (c). 238 

The interquartile range rule and the Cook distances criteria were met in all cases, 239 

showing that there are no influential values for the chosen independent variables. 240 

Regarding to the nature of the independent variables used to construct the model (TPSA 241 

and pKa), a mechanistic interpretation of the relationship between the toxic effect and the 242 

molecular descriptors and properties that describe the behaviour, can be given. As 243 

mentioned before, one of the most significant descriptors in the MLR models involving 244 

pure and non-ionic species is the partition coefficient, log P (Garcia et al., 2015; Mutalib 245 

and Ben Ghanem, 2017; Perales et al., 2017a; Zuriaga et al., 2018) assuming a baseline 246 

toxicity governed by bioavailability. The property  log P is usually related with the 247 

(a) (b) (c) 



capacity of molecules to cross the cellular membranes (Katritzky et al., 2009). Mostly, 248 

the adjustable coefficients of the model associated with the descriptor log P are negative 249 

(Levet et al., 2016) and this is related to chemical bioaccumulation and bioavailability, 250 

which are preferential in lipophilic molecules (promotion of transmembrane passage). 251 

However, although log P can be also found as behavioural descriptor for mixtures and 252 

ionic species (Kusumahastuti et al., 2019) it is not quite usual in that cases and some other 253 

structural molecular and topological descriptors are commonly used in the QSAR 254 

development of the mathematical model (Ma et al., 2015; Roy et al., 2015; Yan et al., 255 

2015). In this study, log P does not correlate with log EC50 in any of the mixing rules 256 

described. However, there is a strong relation of the ecotoxic effect towards A. fischeri 257 

with TPSA in the form of R7 mixing rule. The descriptor TPSA (also known as Polar 258 

Surface Area defined as the summation of areas of polar atoms in the molecule) has been 259 

related with passive molecular cell membrane transport (Ma et al., 2015) and has been 260 

previously used as independent variable in QSAR studies for predicting the toxicity 261 

(Cassotti et al., 2014; Jiang et al., 2010). Thus, TPSA in our model can be considered as 262 

a reflection of the ability of molecules to transport through biological membranes. The 263 

other independent variable obtained in the model is pKa in the form of R2 mixing rule. 264 

This can be explained taking into account the nature of the biomodel used. The optimal 265 

pH range for the culturing medium of these bacteria is 6-8,5 (2007). It has been previously 266 

demonstrated the severe effect of the pH in the toxicity and biological response of A. 267 

fischeri bacteria (Berzinskiene and Travkina, 2003). The experimental methodology used 268 

for obtaining the raw data utilized for developing the model (de Morais et al., 2015; 269 

Macario et al., 2018; Ventura et al., 2014) does not explicit the pH control of the samples 270 

used for the exposure of toxicants to the bacteria. Besides, there is a positive correlation 271 

between the toxic effect towards A. fischeri (raw EC50 values obtained from bibliography) 272 



and the proportion of an organic acid in the mixtures. Thus, the variable pKa seems to be 273 

an adequate descriptor in this case in the.  Both mixing rules selected, R2 and R7 take into 274 

account the composition of the components of the NADES. 275 

The Williams plot (Figure 3) was used to visualize the applicability domain of the 276 

model. The warning leverage value limit is h* = 0,237. All of the chemicals of the training 277 

set and test set are within this h* limit and three standard deviation units, 3δ. At this point, 278 

it should be remarked that ecotoxicity values provided by this QSAR model will take into 279 

account the toxic effect of pH.  280 

 281 

Figure 3: Williams plot. Standardized residuals versus leverage for training ● and test ○ 282 

set data. Limits h* = 0,237 and 3δ are marked.  283 

 284 

Experimental log EC50 values were compared to those obtained with the proposed 285 

model in order to visualize the prediction ability of the model. In Figure 4 (a), plots of the 286 

experimental values vs. those calculated with the obtained model (Equation 4) are shown 287 

and in Figure 5, absolute residual values are also given for each mixture.  288 

 289 

(a) 



 290 

 291 

Figure 4: (a) Plots of experimental data vs. predicted values of Log EC50 as calculated 292 

through the obtained model (Equation 4). Solid line: linear regression between 293 

experimental data and predicted values, for comparing. (b) Plots of the experimental data 294 

vs. those predicted by the LOO model. Solid line: linear regression between experimental 295 

data and predicted values, for comparing. 296 

There is no a clear trend with regard to the NADES whose toxic behaviour can be 297 

better described with the model and predictions depend not only on the chemicals 298 

involved but also on the composition of each component. The case 15, ChClCA 11 is the 299 

mixture that is better predicted, with the smallest deviation (absolute value of residual < 300 

0,04) while the case 30, ChClPA 14 is the NADES with highest deviation (absolute 301 

residual value > 2). It is worth mentioning that mixtures containing propionic acid show 302 

high residual values in general. Furthermore, the deviations increase with the composition 303 

of propionic acid. 304 

(b) 
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Figure 5: Absolute residuals calculated for the training set and test set.  306 

 Internal validations have been carried out by means of the LOO and BOO 307 

methods. LOO results are graphically represented in Figure 4 (b), being the calculated 308 

𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿2 = 0,601. This value, although low, is still reasonable for a biological response and 309 

the difference between 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿2  and R2 is lower than 0.3 units.  310 

 BOO internal validation results are shown in Table 3, with the same adjustable 311 

coefficient values for the multiple linear regression as in our model and 𝑄𝑄𝐵𝐵𝐿𝐿𝐿𝐿2  = 0,601.   312 

 Finally, test set (cases 4, 10, 16 and 34) was used for external validation 313 

purposes. The predicted values were compared with the experimental values with 𝑄𝑄𝐸𝐸𝐸𝐸𝑇𝑇2  = 314 

0,621, even better than for the training set.  As mentioned before, all of the test set values 315 

are within the applicability domain. Obtained residuals (Figure 5) for the test set are quite 316 

low except for the case 16, containing acetic acid (ChClAA21).  317 

 318 

4. Conclusions 319 

 In this manuscript a new, easy and available way of obtaining QSAR 320 

mathematical models for predicting the (eco)toxicicty of complex mixtures as NADES 321 

has been obtained. The method is based on the use of several mixing rules that contains 322 

the information of the characteristics and composition of the individual components. For 323 



developing the QSAR study, only the individual components of the mixtures have been 324 

modelled, which a clear advantage is since simplifies the model and reduces time of 325 

modelling. 326 

 In this case, we have obtained a model for the prediction of the ecotoxic 327 

behaviour of NADES towards the marine bacteria A. fischeri. The final obtained model 328 

comprised two independent variables that encoded information about bioavailability, 329 

𝑅𝑅7_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 and toxic effect of pH, 𝑅𝑅2_𝑝𝑝𝑝𝑝𝑝𝑝 and the composition of each of the component 330 

in the NADES. These two independent variables are enough for describing the observed 331 

behaviour and there is no overfitting, one of the problems that many previous studies 332 

suffer from. The obtained model meets all the criteria proposed by the OECD guidance 333 

document for QSAR methodology. The applicability domain is also provided and thus, 334 

the model proposed in this work can be used in a future taking into the limitations given. 335 

Finally, the predicted EC50 values will take into account the toxic effect of pH. 336 
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