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Abstract: This paper analyzes the co-movements of prices of fossil fuels, energy stock markets and 

EU allowances. This analysis is conducted in order to identify the spillover effect of volatility and 

correlation among these financial markets, and to provide a scientific basis that shows the interest 

of incorporating sustainable assets in the design of minimum risk strategies of investment. To 

achieve this goal, we have used a Vector Autoregressive-Dynamic Conditional Correlation-Gener-

alized Autoregressive Conditional Heteroscedasticity (VAR-DCC-GARCH) model that also incor-

porates a stock index of industrial companies as a leading indicator of the level of economic activity. 

In addition, the paper conducts an impulse response analysis to determine how unexpected shocks 

to prices are propagated along time, and, in particular, how they affect prices of the others, both in 

mean, variance and correlation. Therefore, the results of this one- and two-dimensional analysis 

allow for the study of short and long run dynamics of the relationship among those prices, thus, 

providing greater meaning and information for investors, which has implications for building their 

portfolios. The analyzed period was from January 2010 to February 2021, so that the data include 

half of phase II, full phase III and the onset of phase IV of the EU ETS, as well as the COVID-19 

outbreak in the European context. We also analyzed whether the EUA price impulses the demand 

of clean energy stocks, which has important implications for the objective of triggering the invest-

ment in clean energy. Our results show the transmission mechanism of all of those prices, which 

are relevant not only for investors but also for policymakers to construct an early-warning system, 

revealing the most important transmission channels. Moreover, from an investment viewpoint, we 

observe a decline in dirty energies and a rise in the clean energy market, which might be an indica-

tion of the progress towards the energy transition to renewables sources within a circular economy 

perspective. Therefore, this shows that the EU ETS is achieving its goals, and that clean energy com-

panies, aligned with their role towards socially responsible initiatives, are also gaining acceptance 

in terms of investments, which would be beneficial for the environment. 

Keywords: climate change; EU ETS; energy markets; VAR-DCC-GARCH; impulse response analy-

sis; minimum risk portfolio 

 

1. Introduction 

Climate change has deeply influenced environmental issues, the economy and hu-

man health in the world. Greenhouse gas (GHG) emissions are the main source of climate 

change and global warming. Confronted with this situation, many countries and regions 

implemented the emission trading scheme, to achieve emission mitigation goals set by the 

Kyoto Protocol, Copenhagen Accord and Paris agreement. 

The EU emissions trading system (EU ETS) is the cornerstone of the EU’s policy to 

combat climate change, and its key tool for reducing GHG emissions cost-effectively. The 

EU ETS works on the ‘cap and trade’ principle. Within the cap (set as the total amount of 
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gases that can be emitted by installations covered by the system), companies receive or 

buy emission allowances, which they can trade with one another as needed. The EU ETS 

operates by setting a cap on CO2 emissions, which generates a price that reflects the scar-

city in the market. 

The EU ETS was divided into four phases (phase I: 2005–2007, phase II: 2008–2012, 

phase III: 2013–2020), and the fourth phase (2021–2030), has just begun. In phase I and 

phase II, the cap was established bottom-up, based on the aggregation of the national al-

location plans of each member state. Phase III started with a single EU-wide cap for sta-

tionary sources, which was annually reduced by a linear factor of 1.74%. As a result, in 

2014, the commitment to reduce CO2 emissions to 21% was fulfilled, ahead of the deadline 

set in 2020, reaching a 33% reduction. Currently, Phase IV continues using a linear cap 

reduction factor of 2.2% annually, applied to both stationary sources and the aviation sec-

tor without a sunset clause (part of a law or contract that states when it will end, or the 

conditions under which it will end), so that the cap will continue to decline beyond 2030. 

The efficiency of this carbon market can be assessed through the development of the 

carbon price [1–6]. However, despite these good results, it is not clear enough that the 

effect of the EU ETS system has been key in achieving the emission mitigation goals. 

Breaks and changes in the data generating process that underlies the EUA price time series 

are a consequence of the design of the EU ETS. Since the pilot test of the initial phase 2005–

2007, the regulation of the emission rights market has undergone a series of modifications 

that tried to solve the problems of excess supply, derived from the 2008 financial crisis. A 

decline in economic activities led to decreasing emissions and hence to a decreasing de-

mand of allowances, causing an increase in the supply surplus that induced prices to be 

quoted below €10, from the end of 2011 until 2018. Ref. [7] studied the determinants of 

CO2 emissions in the period 2005–2012, in which the policies of the European Commission 

through the EUA only influenced the years prior to the crisis, subsequent reduced emis-

sions were mainly due to the decline in activity resulting from the 2008 recession. Conse-

quently, in March 2019, the European Commission devised a new instrument, the market 

stability reserve (MSR), to intervene in the allowances price and adjust the annual supply 

of CO2 allowances based on the CO2 allowances in circulation. In this way, the MSR incor-

porated greater restrictions on the surplus supply that drove the price to levels around 

€24 in the years 2019 and 2020, thus increasing the cost of emissions of GHG. Currently, 

although the effect of the COVID-19 pandemic has caused significant declines in indus-

trial activity, especially in periods of confinement, the prices of EU allowances were trad-

ing at around €35 at the beginning of 2021. 

In reference to the trading volume, the EU carbon market already represented 84% 

of the total value of the international carbon market in 2010, although it was only since 

2018 that it has resumed its key role in curbing CO2 emissions; this contributed to solving 

the structural imbalances that existed between supply and demand. In addition, new sec-

tors have been incorporated. A Carbon Border Adjustment Mechanism (CBAM) has been 

established to avoid carbon leakage, and the current economic situation caused by the 

COVID-19 pandemic perfectly justifies establishing an adequate system that manages to 

reduce emission levels in the carbon market. 

Specifically, the COVID-19 situation has caused some concern and uncertainty in the 

recovery of certain key sectors in energy demand. In addition, the start of the 2020–2030 

phase shows a new scenario with the commitment adopted in the Paris Agreement that is 

determined to reduce emissions by at least 40% in 2030 from 1990, or in the European 

Green Deal with a total reduction by 2050. 

Consequently, for the EU ETS system to be the driving force that helps meet the 

agreed objectives, a rigorous analysis is necessary that must include the main financial 

markets involved, and their relationship with the EUA price. The associated trading has 

led to higher levels of EUA price volatility and to a changing relation between the EUA 

price and fossil fuel prices, economic activity and energy stock markets. In addition, due 

to the vast trading volume and drastic price changes, the EU ETS is viewed as a common 
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financial market for analyzing financial characteristics and portfolio management [8]. 

Therefore, it is presumable that the level of interaction or interdependence between mar-

kets has important consequencesm in terms of predictability, portfolio diversification and 

asset allocation. For this reason, ref. [9] recommended a joint study between the carbon 

market and fossil fuels market (coal, oil and gas). 

The present work focuses on this issue, taking into account, on the one hand, the 

energy markets that generate the most pollution, either due to their frequent use or due 

to their very nature, and, on the other hand, the markets for clean and dirty energy stocks 

that are related to the carbon market through the EUA.  

Regarding energy markets, according to World Bank data, the main source of pri-

mary energy comes from the consumption of fossil fuels (oil, gas and coal). Furthermore, 

the indicators of the International Energy Agency show that the consumption of fossil fuel 

in the production of energy, transport and in the industry emits the highest amount of 

CO2 emissions in the world. 

The fossil fuel prices have a large impact on the global economy, and the performance 

of almost all companies is affected by their fluctuations [10]. Numerous empirical studies 

[11–13] document that an increase in oil price has had negative impacts on stock prices. 

However, such effects could be industry specific, since there are several sectors that could 

even make profits from rising oil prices. One of these exceptions might be the renewable 

or clean energy industry [14]. This is because rising oil prices encourage the substitution 

of alternative energy sources for conventional energy sources [15]. An increase in fossil 

fuel prices should drive demand for clean energy, consequently driving up the price. This 

should result in an increase of clean energy companies’ stock returns, since this industry 

would be more attractive to investors. In addition, even though the alternative energy 

industry may still be small compared to other more established energy industries, the 

growing role played by renewables is undeniable. 

Moreover, the industrial sectors that consume that type of fossil fuel and generate a 

large amount of emissions must take into account their financial performance, the price of 

fossil fuels and the value of EUA [16]. Furthermore, the greater limitations on surplus 

supply through the MSR to meet the ecological transition objectives shows the need to 

rigorously analyze the information in all of these markets. Therefore, not only the price of 

fossil fuels, but as [17] states, the higher prices of carbon allowances encourage the pro-

duction of clean energies. This fact also justifies the relationship between clean energy 

equity markets and the carbon market. 

Therefore, investors need to better understand the behavior and interactions between 

financial markets, in order to develop portfolios with optimal diversification. Authors 

such as [18,19] state that the carbon market, although emerging, is also an important part 

of financial markets as an alternative investment in portfolio composition.  

The relationship between return and volatility among these markets has been studied 

in the literature in a segmented manner. Thus, while authors such as [20,21] studied the 

link between the carbon market and fossil fuel markets, refs. [17,22] analyzed the relation-

ship of EUA price with clean energy stocks prices, and [23] explored the connection be-

tween fossil fuels and renewable energy stock. However, to our knowledge, a model that 

addresses the joint dynamic linkage in both return and volatility among EU carbon mar-

ket, fossil fuels (oil, gas and coal) and energy equity markets has not yet been carried out. 

Taking into account all of this background information, this paper dynamically ana-

lyzes the relationship between the prices of fossil fuels, emission allowances and clean 

and dirty energy stocks as well as their persistence over time, in order to provide strategies 

for investors. In addition, the economic activity of companies is taken into account by 

adding an industrial stock index that acts as a leading indicator of their level of economic 

activity. Returns, risks and correlations of assets are key elements in empirical finance, 

especially in the construction of optimal portfolios. Therefore, to achieve the objective, we 

use a Vector Autoregressive-Dynamic Conditional Correlation-Generalized Auto-regres-

sive Conditional Heteroscedasticity (VAR-DCC-GARCH) model that lets us capture their 
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evolution through time and identify the transmission of shocks across the mean, volatility 

and correlation of all those variables. In addition, the results of a detailed impulse re-

sponse analysis allow us to study short and long run dynamics of the relationship among 

all of those prices, providing greater meaning and information for investors, which can 

have, in particular, implications for construction of their investment portfolios. In addi-

tion, the analyzed period is from January 2010 to February 2021, which includes half of 

phase II, full phase III of the EU ETS and the onset of phase IV. Hence, we can also analyze 

whether the EUA price impulses the demand of clean energy stocks, which has important 

implications for policymakers, as the objective of the EU ETS is to trigger investment of 

these types of stocks. 

On the one hand, investigating the transmission mechanism is relevant for policy-

makers to construct an early-warning system, revealing the most important transmission 

channels and to guide competent authorities to sustainable energy transitioning towards 

decarbonization. On the other hand, the importance of identifying the spillover effect of 

volatility and correlation in a dynamic way is crucial to efficiently manage the investment 

portfolios, and to carry out optimal diversification of assets. This intelligent management 

reduces the risk, and controls the changes that may occur due to the economic situation 

in general or to greater restrictions with the mechanisms that adjust the supply of allow-

ances. 

Compared with the previous literature, the contribution of this article is four-fold. 

Firstly, this paper considers the construction of a model that addresses the joint dynamic 

linkage, in both return, volatility and correlation, between the markets of carbon, of fossil 

fuels and of energy equities, by taking into account the industrial activity. Second, the 

analyzed period is similarly a novelty, given that it is from January 2010 to February 2021, 

so data comprise half of phase II, full phase III and the onset of phase IV of the EU ETS. 

This includes the removal of the oversupply of allowances, as well as the COVID-19 out-

break. Third, a detailed and meticulous study has been made of the impulse response 

functions in both returns, volatility and correlation from a one-dimensional and two-di-

mensional perspective, which has allowed us to find the most relevant effects among all 

of those markets. Fourth, the weights of the optimal portfolio of minimum risk have been 

determined by taking into account the evolution of the economic situation and the uncer-

tainty associated with the expected returns of each asset, and by evaluating the existence 

of significant differences between the portfolio variances using the Diebold–Mariano test 

[24]. 

The structure of this paper is as follows: Section 2 contains a review of the relevant 

literature. Section 3 describes the data and the multivariate VAR-DCC-GARCH model 

used in the paper. This section also includes the construction of the impulse response 

functions. In Section 4, we provide and discuss the empirical results. Finally, Section 5 

shows general conclusions and further work. 

2. Literature Review 

Several authors have studied the relationship between prices of CO2 emission allow-

ances (EUA) and the fossil energy market. Ref. [25] showed that the main drivers of the 

EUA are raw energy prices (brent, gas and coal), together with the economic activity level. 

Ref. [26] found an indirect link between the consumption of fossil fuels, used in the pro-

duction of electric energy, and the EUA prices. 

Refs. [27,28] found a negative effect of changes in the price of the electricity and the 

three fossil fuels (coal, gas and oil) on carbon prices in US, with the exception of gas that 

changes the sign of its effect if the price of carbon is high. More recently, in Europe, the 

results of [29] showed, on the one hand, that coal prices tend to move weakly in the op-

posite direction to oil and gas prices and, on the other hand, that EUA prices had not 

affected the process of switching from coal to gas as an alternative energy since this was 

very expensive. 
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The literature has also dealt with the transmission of volatility and the evolution of 

the correlations between fossil fuel prices and those of the EUA. In this sense, ref. [30] 

highlighted that the interrelationships between EUA prices and fossil fuels are dynamic, 

finding a transmission of volatility from oil and gas to the carbon market and from the 

latter to coal and gas. Similarly, ref. [31] also found that the volatility transmission is dy-

namic, being especially stronger in crisis periods. Ref. [20] showed the existence of spillo-

ver effects in volatility between EUA prices and coal and gas prices, but not with oil prices. 

In their research, ref. [21] measured both total and directional volatility spillovers by 

means of the forecast-error variance decompositions. Their results revealed that the emis-

sion allowances market was a receiver in excess return, and a transmitter in excess vola-

tility. Regarding the role of fossil energy, both oil and especially gas had a great influence 

on the volatility of the carbon market and, in the case of gas, even in situations that change 

over time due to climate policies and extreme conditions. 

The applicability of these works is not only useful for designing adequate environ-

mental policies, but also for intelligent portfolio management. Information on the correla-

tion and transmission of volatility in the fossil fuel and equity markets can be useful to 

adequately diversify the portfolio and implement hedging strategies to reduce risk. This 

type of study has mainly focused on the effect of oil prices, since it is the most used fossil 

fuel. Thus, ref. [32] showed the negative relationship between oil prices and the Greek 

stock market. Ref. [33] found the existence of increasing trends in the correlations between 

different raw materials (oil, gold, silver and copper) and decreasing trends with the S&P 

500 index since the Iraq war in 2003. Ref. [34] discovered that the correlation between oil 

prices and the Chinese stock market increased markedly because of the 2008 crisis, and 

that new energy companies were less exposed to this fuel. In their work, ref. [35] analyzed 

data from different countries, and found changing correlations that increased with the 

2008 crisis, and showed that oil price shocks tended to have a negative effect on stock 

markets. 

Studies on the relationship of clean energy start-ups and fossil fuel prices have also 

focused primarily on explaining the effects of oil. Thus, refs. [36,37] showed that, despite 

the fact that oil price increases favor the performance of clean energy companies, the 

prices of technology companies exert a greater influence on the profitability of those com-

panies. Refs. [14,38] found a structural change after the 2008 crisis, from which oil prices 

and share prices of technology companies had an even stronger relationship with clean 

energy stock prices. Ref. [39] analyzed the systemic risk between oil prices and the contri-

bution rates of renewable energy based on the conditional value at risk, and found that 

variations in oil prices contribute to around 30% of the risk of this indicator. Finally, ref. 

[15] found that oil prices and technology stock prices affect the share price of clean energy 

companies. However, they found no relationship between EUA prices and these compa-

nies’ stocks. Moreover, ref. [40] found a significant level in the transmission of volatility 

among EUA, fossil fuels, electricity and the clean energy market. They found that the most 

important effects (on both return and volatility) were exerted by oil prices and the effects 

of clean energy and coal markets on EUA prices were also significant. Similarly, through 

analyzing the European and American markets, ref. [17] found volatility spillover effects 

between EUA prices and clean energy companies specific to each country–region. In ad-

dition, they found a low average correlation between both types of assets, which makes 

proper diversification possible. In their study, in China, ref. [22] found significant dy-

namic correlations and transmission of volatility between both markets together with coal. 

In this case, the persistence of shocks is greater between coal and clean energy stocks, 

reflecting the great importance of this fuel in that country. 

Other works have related the allowances price with the stock markets of “dirty” en-

ergy, due to their higher levels of CO2 emissions. Thus, ref. [41] showed the existence of a 

positive relationship between the stock prices of electricity companies and that of emis-

sion allowances, although [42,43] showed that EUA price reductions did not positively 

affect the stock price of the dirty energy sector in certain periods of large EUA price drops. 
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Ref. [44] found the presence of a carbon premium with the granting of free carbon emis-

sion allowances for German companies, which contributed to increasing their price, espe-

cially for the most emission-intensive companies. Ref. [45] showed a positive and negative 

impact between the returns of the (EUA) and the stocks of “dirty” energy companies in 

Spain for the subsequent periods of phase II and phase III, respectively. Similarly, ref. [46] 

showed that the returns of the EUA negatively affect the returns of the stocks of the most 

carbon intensive companies. More recently, ref. [47] found a strong link between the re-

turns of European electricity stocks and the EUA, although their relationship depends on 

the situation of the market of emission allowances and on the stability of the financial 

markets. Finally, in the Chinese stock market, ref. [48] found negative dynamic correla-

tions between the carbon emissions trading market and the capital market, relating it to 

the establishment of unreasonable shares in the EUA stock market. 

Therefore, it is evident that the literature has studied the link between the emission 

allowances market with fossil fuel markets, and those of the stocks of clean and dirty en-

ergy companies. The results highlight the existence of significant spillover effects in vola-

tility and changing correlations between series overtime, related to the evolution of the 

economic activity. However, we have not found any work that analyzes the relationships 

among all markets together, which can give a wider perspective to these relationships. 

Our goal is to help fill this gap in the literature while also explicitly incorporating the 

expected evolution of the level of companies’ economic activity. 

3. Data and Methods 

This section starts by presenting some basic information about the data analyzed in 

this study in Section 3.1. Section 3.2 describes the VAR-DCC-GARCH model used to esti-

mate the expected return and risk of the analyzed series. Finally, Section 3.3 shows how 

to carry out an impulse response analysis in mean, volatility and correlation, which gives 

an indication of how these moments change after positive or negative shocks. 

3.1. The Data 

This study has used data from seven series of daily closing prices from January 19 

2010 to February 5 2021, which includes 2675 observations. All variables are expressed in 

euros. The fossil fuel series (named GAS.UE, OIL and COAL in our database) refers to the 

futures prices of the main raw materials in Europe (Daily closing prices of UK Natural 

Gas, Brent oil and Rotterdam Coal Futures were obtained from Intercontinental Exchange 

(ICE) on Investing.com). Coal futures are listed on the stock exchange Rotterdam market, 

which is the largest trading volume in Europe. The “Brent” oil futures are listed in the 

United Kingdom, and they are the main reference for the price of a barrel of this fuel in 

Europe. In the case of Natural Gas Futures, the reference in Europe is also listed on the 

United Kingdom stock exchange market. These three fuels are the main generators of 

“dirty” energy, and coal is the one that pollutes the most and is the cheapest of the three. 

Gas is the one that pollutes the least, and, in Europe, it has experienced important growth 

replacing coal in generating electricity (https://www.iea.org/data-and-statistics/?coun-

try=EU28&fuel=Energy%20supply&indicator=ElecGenByFuel, accessed on 7 May 2021) 

[29]. Finally, oil continues to be the main natural resource of the industrialized world, 

whose demand continues to grow (https://www.iea.org/data-and-statistics?coun-

try=WORLD&fuel=Energy%20supply&indicator=TPESbySource, accessed on 7 May 

2021). 

The series of stock prices of clean and dirty energy sectors are the S&P Global Clean 

Energy Index (more information and details on the weights and the calculation formula 

of this index can be seen on https://www.spglobal.com/spdji/en/indices/esg/sp-global-

clean-energy-index/#overview, accessed on 7 May 2021) and the EURO STOXX® Oil & Gas 

Index (more information and details on the weights and the calculation formula can be 

seen on https://www.stoxx.com/index-details?symbol=SXEE, accessed on 7 May 2021), re-
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spectively. The S&P Global Clean Energy Index (named CLEAN in our database) is de-

signed to measure the performance of 31 companies from all over the world in clean en-

ergy-related businesses. This index comprises a diversified mix of production companies, 

in addition to clean energy technology and equipment. The “dirty” energy indicator 

(named OIL.GAS in our database) provides information on the 12 largest European com-

panies engaged in the exploitation, drilling, production, refining, distribution and retail 

sale of oil and gas products, according to the market standard Industry Classification 

Benchmark (ICB) (ICB categorizes companies according to their primary source of reve-

nue, for more details see https://www.stoxx.com/sector-classification-icb, accessed on 20 

July 2021). Moreover, we have decided to include an indicator, in order to reflect the situ-

ation of industrial activity throughout the period, so, we can have a reference related to 

the situation of the economic cycle in each time, which helps to interpret the relationships 

based on this indicator. This indicator (named INDUSTRIAL in our database) is repre-

sented by the STOXX 600 Optimized Industrial Goods and Services index (data are ob-

tained from ETF ISIN: IE00B5MJYX09, more information and details on the weights and 

the calculation formula can be seen on https://www.stoxx.com/index-details?sym-

bol=sxonp, accessed on 20 July 2021). This index provides information from a representa-

tion of the leading companies in their respective sectors that make up the STOXX Limited 

based on the Industry Classification Benchmark. 

Finally, the variable EUA collects the prices of European Unit Allowances, and has 

been obtained from SENDECO2 (European CO2 Trading System), a company that buys 

and sells emission rights on its own account, and technical and administrative advice of 

industrial facilities subject to the trade directive (EU ETS). 

Figure 1 shows the evolution of the seven series throughout the analyzed period. A 

general decreasing movement of coal and oil prices is observed, although with some cor-

rection in the 2016–2019 period. In the case of coal, this decrease is due to its loss of im-

portance in the energy mix, especially since 2018, caused by its high pollution power and 

its dangerous effects on people’s health, which makes it necessary to abandon and transi-

tion towards sustainable energy production. In the case of oil, there are two sharp falls, 

the first in 2014 (Syrian conflict) and the second in 2020 (COVID-19 pandemic). Regarding 

gas, there is not a clear trend, but rather a fluctuating evolution of prices depending on 

the scope of production, reserves, weather conditions, economic growth and crude oil 

prices as well as, more recently, coal prices. Fossil fuels still have a major role in the de-

velopment of the economy, facilitating the mobility of people and goods, the production 

of many materials and energy generation. In this sense, the main consumption of coal 

comes from industry, oil from transportation and gas from household demand. 

Figure 1 also shows a strong rising trend in the industrial index, which reflects the 

economic growth in Europe and the influence of technological advances. In reference to 

the evolution of EUA price, we can focus on the different phases of the EU ETS, especially 

in phase III (2013–2020), where after hitting its minimum, the latest reforms on the with-

drawal of excess supply have caused a significant rebound in the price. This evolution has 

been accompanied by a similar evolution in clean energy share prices, the value of which 

has shot up since 2020, which highlights that high EUA prices have encouraged the use of 

this type of energy. Prices of dirty energy company shares are closely linked to that of 

their fossil fuels, especially to those of gas and oil. These opposite trends in prices of clean 

and dirty energy companies in recent years show more favorable future scenarios for com-

panies that are committed to the renewable energy transition. 
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Figure 1. Matrix graph with the evolution of the daily prices of the seven series. 

3.2. The Model 

Let {pi,t; i = 1, …, N; t = 1, …, T} be the series of daily prices of the financial assets 

analyzed. 

As in most financial studies, all of the analysis are carried out with the returns of 

assets instead of their prices, which, unlike prices, are stationary (see Figure 2) and they 

are also more interesting from an investment point of view.  

So, let {rt = (r1,t, …, rN,t)’; t = 1, …, T} be the series of daily financial returns vectors with 

ri,t = 100 ∙ log (
Pi,t

Pi,t−1
) for i = 1, …, N. 

We assume that 

𝐫t|𝓕t−1 = 𝛍t + 𝛆t  

where 𝓕t = {r1, ... , rt} is the information set in period t, 𝛍t = E[rt|𝓕t−1] and εt = (ε1t, …, 

εN,t)’ is the error term. The conditional mean vector, 𝛍t, is derived from a conditional het-

eroscedastic Vector Autoregressive Model of order K (VAR(K)) given by: 

𝛍t = ∑ 𝚽k𝐫t−k

K

k=1

  

with {Фi; i = 1, …, K} being time invariant matrices N × N and 

var(𝐫t|𝓕t−1) = var(𝛆t|𝓕t−1) = 𝐇t    

where 𝐇t is a N × N positive definite matrix. 

In order to model the evolution of Ht, we have used the class of multivariate models 

called Dynamic Conditional Correlation (DCC) models introduced by [49,50]. This kind 

of model allows for correlations and covariances to vary over time, by keeping the flexi-

bility of the univariate GARCH approach to capture the volatility of each univariate series. 

This is a reliable tool for estimating interconnections between them. Because of the inter-

dependence between stock market variables, the estimation of correlations and covariance 

matrices turns out to be a requisite for financial market investors. 

In the DCC(M1,M2)-GARCH(P,Q) specification, the variances and covariance matrix 

Ht is given by:  
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𝐇t = 𝐃t𝐑t𝐃t  

where 𝐃t = diag(√h11,t, ⋯ , √hNN,t) with hii,t = var(ri,t|𝓕t−1) for i = 1, …, N and Rt is the 

conditional correlation matrix. The conditional variances hii,t are given by n independent 

GARCH(P,Q) models that can be written in vector form as: 

diag(𝐇t) = 𝛀 + ∑ 𝐀p𝛆t−p⨀𝛆t−p

P

p=1

+ ∑ 𝐁qdiag(𝐇t−q)

Q

q=1

  

where 𝛀 = diag(ωi), {𝐀p = diag(αi,p); p = 1, … , P} and {𝐁q = diag(βi,q);  q = 1, … , Q} are 

N × N diagonal matrices, and ⨀ denotes the Hadamard operator. 

With respect to the time varying correlation matrix, 𝐑t, we assume that  

𝐑t = 𝐐t
∗−1𝐐t𝐐t

∗−1  

where Qt is given by: 

𝐐t = �̅� + ∑ am(𝐳t−m𝐳t−m
′ − �̅�)

M1

m=1

+ ∑ bn(𝐐t−m − �̅�)

M2

n=1

  

𝐐t
∗ = diag(𝐐t)  

with a1, …, aM1 and b1, …, bM2 being non-negative scalars verifying the condition that 

∑ am
M1
m=1 + ∑ bn

M2
n=1 < 1, which is imposed to ensure the stationary and positive definite-

ness of 𝐐t; zt = 𝐃t
−1𝛆t are the standardized residuals; �̅� is the unconditional covariance 

matrix of the standardized residuals, resulting from the first stage estimation; {𝐳t𝐳t
′ =

�̅�; −M1 ≤ t ≤ 0} and {𝐐t = �̅�; −M2 ≤ t ≤ 0}, are the starting values of 𝐐t. 

The parameters of the model are estimated in a three-step procedure based on [51]. 

In a first step, we estimate a multivariate VAR(K) model for rt and we obtain an estimation 

�̂�t of the residuals εt. In a second step a univariate GARCH(P,Q) model is estimated for 

each residual univariate time series {ε̂i,t; i = 1, …, n; t = 1, …, T} and an estimation of �̂�t =

diag (√ĥ11,t, … , √ĥNN,t), t = 1, …, T is obtained. Finally, in a third step, the estimation of a1, 

…, aM1 and b1, …, bM2 is carried out by maximizing the following pseudo log-likelihood L: 

L = {

L1 if 𝐳𝑡  ~ N(𝟎, 𝐑𝐭)

L2 if 𝐳𝑡  ~ tν(0, 𝐑𝐭)

 L3 if 𝐳𝑡  ~ L(0, 𝐑𝐭) 

  

where 

L1 = −
1

2
∑(log(|𝐑t|) + �̂�t

′𝐑t
−1�̂�t)

T

t=1

  

L2 = Tlog (
Γ (

N + ν
2

)

Γ (
ν
2

)
) −

NT

2
log(ν) −

1

2
∑ (log(|𝐑t|)+, (ν + N)log (1 +

1

ν
�̂�t

′𝐑t
−1�̂�t))

𝑇

𝑡=1

  

L3 = −
1

2
∑ (log(|𝐑t|) +

(𝑁 − 2)

2
log (

�̂�t
′𝐑t

−1�̂�t

2
) − 2log (K(2−N)

2

(√2�̂�t
′𝐑t

−1�̂�t)))

𝑇

𝑡=1

  

and N(0, Rt), tν(0, Rt), L(0, Rt) denote a multivariate normal, a multivariate Student t with 

ν degrees of freedom and a multivariate symmetric Laplace distributions, respectively, all 

of them with location 0 and scale matrix Rt, and where �̂�t = �̂�t
−1�̂�t, �̅� = 

1

T
∑ �̂�t

′�̂�t
T
t=1  and Kν 

is the modified Bessel function of the second kind. 
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3.3. Impulse response Analysis 

In this section, the determination of the impulse response functions is addressed. Im-

pulse response functions represent the mechanisms through which shocks spread over 

time. Their main purpose is to describe the evolution of model variables in reaction to a 

shock in one or more of them. 

These functions explore the dynamics of an error shock in the system on the future 

predicted mean, variance and correlation of the variables. In order to simplify the expres-

sions, we obtain these functions for the VAR(1)-DCC(1,1)-GARCH(1,1) model, which is 

the selected one in our empirical application. 

We denote by VIRFM to the impulse response function for the conditional expecta-

tion, that is defined as the mean of the response vector conditional on history and a current 

shock, as compared with a baseline that conditions only on historical innovations. That is 

to say: 

VIRFM(h, 𝓕t−1) = E[𝐫t+h|𝐳t = 𝐞t, 𝓕t−1] − E[𝐫t+h|𝓕t−1]  

where the standardized shock 𝐞t occurs at time t, and h represents the horizon of prediction. 

The impulse response function in a VAR(1) is given by: 

VIRFM(h, 𝓕t−1) = 𝚽1VIRFM(h − 1, 𝓕t−1), when h ≥ 1  

with 𝚽1 being the matrix of coefficients of the VAR(1) model, and the initial value is: 

VIRFM(0, 𝓕t−1) = 𝐇t
1/2

𝐞t  

In the same way, we denote by VIRFH the impulse response function for the variance 

and covariance matrix of the variables, and it is defined as [52]: 

VIRFH(h, 𝓕t−1) = E[𝐇t+h|𝐳t = 𝐞t, 𝓕t−1] − E[𝐇t+h|𝓕t−1]  

This study can be carried out separately for conditional variances and correlations 

because of the following decomposition:  

E[𝐇t+h|𝓕t−1] ≅ E[𝐃t+h|𝓕t−1]E[𝐑t+h|𝓕t−1]E[𝐃t+h|𝓕t−1]  

In regard to the impulse response function for the conditional volatility, as opposed 

to the conditional mean, we use the fact that GARCH models can be viewed as a VAR 

model for the error εit squares. Therefore, it is possible to use this particular structure to 

analytically calculate conditional expectations of volatility in their VIRF analysis. Thus, let 

us denote by VIRFD that the impulse response function corresponding to the individual 

volatilities of each variable, which is defined as the expectation of volatility conditional 

on an initial shock and on history minus the baseline expectation that conditions on his-

tory: 

VIRFD(h, 𝓕t−1) = E[𝐃t+h
2 |𝐳t = 𝐞t, 𝓕t−1] − E[𝐃t+h

2 |𝓕t−1]  

In our case, we have a GARCH(1,1) model for each residual εit, then P = Q = 1 and the 

model reduces to: 

diag(𝐇t) = 𝛀 + 𝐀𝛆t−1⨀𝛆t−1 + 𝐁diag(𝐇t−1)  

with 𝛀, A and B being the diagonal matrices that contain the parameters ω𝑖 , α𝑖 and β𝑖  of 

the n individual models for the conditional variances. The VIRFD for a horizon h can be 

calculated as [52]: 

VIRFD(h, 𝓕t−1) = (𝐀 + 𝐁)VIRFD(h − 1, 𝓕t−1), when h > 1  

and for h = 1: 

VIRFD(1, 𝓕t−1) = 𝐀 ∙ diag (𝐇t

1
2⁄

(𝐞t𝐞t
′ − 𝐈N)𝐇t

1
2⁄

)  

with IN the identity matrix N × N. 
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Finally, for the correlation matrix, let us denote VIRFR as the impulse response func-

tion of the conditional correlation, which is defined as: 

VIRFR(h, 𝓕t−1) = E[𝐑t+h|𝐳t = 𝐞t, 𝓕t−1] − E[𝐑t+h|𝓕t−1]  

Given the DCC model and following [51] we use the following approximation: 

E[𝐑t+h|𝓕t−1] ≈ E[𝐐t+h|𝓕t−1]  

Therefore,  

VIRFR(h, 𝓕t−1) ≈ E[𝐐t+h|𝐳t = 𝐞t, 𝓕t−1] − E[𝐐t+h|𝓕t−1]  

where 

E[𝐐t+h|𝓕t−1] = (1 − a − b)�̅� + a𝐳t+h−1𝐳t+h−1
′ + bE[𝐐t+h−1|𝓕t−1]  

and �̅� = 
1

T
∑ �̂�t

′�̂�t
T
t=1 . So, the impulse response function is approximated by: 

VIRFR(h, 𝓕t−1) = (a + b)VIRFR(h − 1, 𝓕t−1), when h > 1  

VIRFR(1, 𝓕t−1) = a ∙ 𝐃t
−1𝐇t

1
2⁄

(𝐞t𝐞t
′ − 𝐈N)𝐇t

1
2⁄

𝐃t
−1  

4. Results 

This section provides the empirical results, which are organized in the following way. 

Section 4.1 presents the results of the estimation process. Section 4.2 shows the impulse 

response analysis and, finally, Section 4.3 shows the dynamic evolution of the minimum 

risk portfolio weights. 

4.1. Estimation of the Model 

Figure 2 shows the daily evolution of the return of the analyzed prices, and Table 1 

displays the results of a descriptive study. Their behavior is typical of most of daily asset 

returns series [53]: heteroscedasticity with volatility clustering (large changes tend to be 

followed by large changes of either sign, and small changes tend to be followed by small 

changes) and statistically significant leptokurtosis. The series with the highest volatility 

are EUA and GAS.UE, meanwhile the three stock indices—CLEAN, OIL.GAS and IN-

DUSTRIAL—have lower and similar volatilities, given that they are weighted averages of 

firm returns. 

Table 1. Descriptive analysis of the daily returns of the seven series. 

 Minimum Maximum Mean Std. Dev. Skewness Kurtosis 

COAL −18,090 19,416 −0.009 1394 0.737 * 47,574 * 

GAS.UE −17,253 34,275 0.012 2926 1.098 * 11,975 * 

OIL −27,976 19,077 −0.009 2303 −1.043 * 21,159 * 

EUA −42,252 21,586 0.039 3244 −0.979 * 15,572 * 

CLEAN −12,497 11,033 0.013 1527 −0.606 * 7415 * 

OIL.GAS −17,953 12,387 −0.012 1527 −1.067 * 17,061 * 

INDUSTRIAL −14,344 9414 0.041 1337 −0.928 * 9818 * 

* Significant at 0.1%. 
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Figure 2. Matrix graph with the evolution of the daily returns of the seven series. 

Figure 3 shows a matrix graphic with the cross-correlation function of all the return 

series in the off-diagonal cells, and their autocorrelation function in the diagonal ones. 

The diagonal cells highlight the existence of a majority of small non-significant auto-

correlations, typical of this kind of financial time series (A study of the autocorrelations of 

each series revealed that their absolute values were ≤0.10; besides the 80% these were not 

significant and among the significant the 62.5% corresponded to lags ≥ 6, which is due to 

the heteroscedastic character of the series (see Figure 4).) [53]. On the contrary, the off-

diagonal cells show that most of the contemporaneous correlations are significant. Three 

groups of assets can be distinguished according to the importance of their correlations: 

COAL and GAS.UE; OIL, CLEAN, OIL.GAS and INDUSTRIAL; and EUA. The first two 

groups only have relevant positive correlations intra-groups and insignificant ones be-

tween them. For its part, EUA has significant positive correlations with all the series. 

In order to collect the joint links, we fitted VAR(K) models with K ≤ 5 and we selected 

K using some information criteria: Akaike information criterion (AIC), Bayesian infor-

mation criterion (BIC) and Hannan and Quinn information criterion (HQC). AIC selected 

K = 3 while HQC and BIC selected K = 1, due to their more parsimonious character. Figure 

4 shows the cross-correlation function of the residuals of the VAR(1) model in the off-

diagonal cells, and the autocorrelation function of the quadratic residuals in the diagonal 

cells in a matrix graphic. Residuals are heteroscedastic with all of the diagonal autocorre-

lations significantly positive, reflecting the existence of volatility clustering and a high 

persistence in all the series. Therefore, we use a GARCH model for each of the analyzed 

series. 

The off-diagonal cells in Figure 4, which contain the correlations between residuals, 

point towards a multivariate GARCH model that should be proposed, allowing correla-

tion between all of the series. Moreover, we can observe the existence of a simultaneous 

correlation between the different series, so we estimated a DCC model and carried out the 

[51] test, to verify whether the correlations are constant over time or not. The test value 

was 24.495 with a p-value of 4.79 × 10−6, clearly indicating that the correlations are not 

constant throughout the period studied (Analogous studies with the residuals of VAR(2) 

and VAR(3) models were car-ried out, and we obtained similar results which are omitted 

for the sake of brevity). Studies on the interrelationships between prices of EUA and of 

fossil energy (coal, gas and Brent oil) such as that of [20,30] showed that these are dynamic 

and therefore, changing in time. 
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Figure 3. Cross-correlation function of the returns of the seven series in the off-diagonal cells and with the autocorrelation 

function on themselves in the diagonal. 
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Figure 4. Matrix graph with the cross-correlation function of the residuals of the VAR(1) model in the off-diagonal cells, 

and with the autocorrelation function of the quadratic residuals in the diagonal. 
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To determine the definitive model, a comparison analysis with three multivariate 

distributions of the errors (multivariate Gaussian, multivariate Student t and multivariate 

Laplace) and with lags 1, 2 and 3 was carried out. This study is presented in Table 2, which 

shows the value of the selection information criteria (The values of the information criteria 

and the estimations of the models used in the paper were made using the packages 

rmgarch and rugarch of R version 4.0.3). 

Table 2. Selection criteria with different multivariate distributions and VAR-GARCH-DCC models (the optimal model in 

bold print). 

 VAR(1)-GARCH(1,1)-DCC(1,1) VAR(2)-GARCH(1,1)-DCC(1,1) VAR(3)-GARCH(1,1)-DCC(1,1) 

Distribution AIC BIC HQC AIC BIC HQC AIC BIC HQC 

M. Normal 25.127 25.332 25.202 25.160 25.473 25.273 25.201 25.622 25.353 

M. T Student 24.319 24.526 24.394 24.357 24.672 24.471 24.408 24.831 24.561 

M. Laplace 24.655 24.860 24.729 24.698 25.011 24.811 24.759 25.180 24.912 

From Table 2, we can see that the VAR(1)-GARCH(1,1)-DCC(1,1) model with multi-

variate Student’s t distribution is selected since it has the minimum value in all criteria. 

Table 3 presents the estimation of the coefficients of the mean equation of the VAR(1) 

model. 

Table 3. Estimated coefficients of the VAR(1) model (the significant coefficients are in bold print). 

Coefficients COAL(-1) GAS.UE(-1) OIL(-1) EUA(-1) CLEAN(-1) OIL.GAS(-1) INDUSTRIAL(-1) 

COAL 
0.02338 0.05579 ** 0.00922 −0.00919 0.02650 −0.05097 * 0.03341 

(0.24255) (0.00000) (0.51479) (0.28874) (0.25299) (0.07805) (0.30190) 

GAS.UE 
0.02176 0.05417 ** −0.00455 0.00584 0.01190 −0.10689 * −0.01403 

(0.60628) (0.00818) (0.87886) (0.74917) (0.80771) (0.07985) (0.83716) 

OIL 
−0.03012 −0.00792 0.07510 ** 0.00359 0.06640 * 0.01437 −0.13066 ** 

(0.36423) (0.62306) (0.00138) (0.80293) (0.08432) (0.76465) (0.01498) 

EUA 
−0.11469 ** −0.05019 ** −0.01282 0.00617 0.04902 −0.15851 ** 0.04049 

(0.01410) (0.02686) (0.69803) (0.76041) (0.36527) (0.01894) (0.59218) 

CLEAN 
−0.04084 * 0.01264 0.00291 0.01138 0.13734 ** 0.05042 −0.11047 ** 

(0.06196) (0.23390) (0.85097) (0.22939) (0.00000) (0.11099) (0.00180) 

OIL.GAS 
−0.01479 −0.00295 0.00410 −0.01071 0.06667 ** 0.06888 ** −0.05208 

(0.50154) (0.78264) (0.79208) (0.26052) (0.00891) (0.03034) (0.14340) 

INDUSTRIAL 
−0.01428 −0.00292 0.02909 ** −0.01063 0.09595 ** 0.00449 −0.06639 ** 

(0.45801) (0.75483) (0.03263) (0.20168) (0.00002) (0.87190) (0.03298) 

The p-values are enclosed in parentheses, indicated with * significant at 10% and ** significant at 5%. 

It can be seen that the autoregressive AR(1) coefficients of most of the series are small 

(absolute value < 0.15). All of this reflects the existence of high levels of efficiency in the 

market, with quick mean reversion to zero against any imbalance that appears in the asset 

returns. The short-term evolution of EUA is negatively influenced by COAL, GAS.UE and 

OIL.GAS. A price increase of COAL and GAS.UE foresees a decrease in CO2 emissions 

and, therefore, a decrease in EUA prices. Similarly, when prices of OIL.GAS go up, inves-

tors discount a higher profitability of the companies in this sector, with a reduction in their 

costs that translates into a subsequent decrease in the prices of GAS.UE, COAL and EUA. 

On the other hand, the past evolution of EUA does not significantly influence any of the 

series, which reflects that the stimulus to reduce CO2 by switching from dirty to clean 

energy it is not channeled through the mean return of the series. Refs. [15,42,43] also did 

not find significant relationships between allowance and stock prices of clean and dirty 

energy firms. Perhaps this fact justifies the change to more restricted mechanisms of re-

moving excess allowances. 
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Finally, we focus on the relationship between clean, dirty and industry stocks with 

oil prices. Industrial price growths anticipate the decrease in OIL prices as well as in 

CLEAN and OIL.GAS stock prices, i.e., cost decreases, which therefore increase the com-

panies’ future profitability. On the other hand, OIL price increases anticipate INDUS-

TRIAL stock price increases because an increase in the demand of this raw material is 

usually linked to economic boom periods. In the same line, increases in CLEAN stock 

prices are also usually connected to economic boom periods and, for this reason, antici-

pate increases in OIL prices and in OIL.GAS and INDUSTRIAL stock prices. This fact in-

directly reveals the increasing importance of clean companies, whose evolution has a sig-

nificant and direct influence not only on the industrial sector, but also on the price of oil 

and dirty companies (but not the opposite). All of this highlights the convenience in pro-

moting the activity of these types of companies, to the detriment of other more polluting 

ones, not only for the obvious environmental reasons but also for economic purposes. 

The estimates of the conditional variance and covariance equations of the DCC(1,1)-

GARCH(1,1) model with multivariate Student t distribution are shown in Table 4 and 

Figure 5. Figure 5 shows the estimated volatility of the daily returns of the seven series in 

the diagonal cells, and the estimated dynamic correlation between two variables in the 

off-diagonal cells in the matrix graphic. A red horizontal line marks the mean value that 

would correspond to a constant correlation model (CCC model). 

Table 4. Estimated coefficients of the DCC(1,1)-GARCH(1,1) model with multivariate Student t distribution. The signifi-

cant coefficients are in bold. 

Coefficients COAL GAS.UE OIL EUA CLEAN OIL.GAS INDUSTRIAL 

ωi 
0.0098 ** 0.0629 * 0.0325 ** 0.1089 ** 0.0286 ** 0.0226 ** 0.0394 ** 

(0.0374) (0.0504) (0.0328) (0.0479) (0.0107) (0.0104) (0.0000) 

αi 
0.0087 * 0.1051 ** 0.0797 ** 0.1196 ** 0.01018 ** 0.0925 ** 0.1106 ** 

(0.0527) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000) 

βi 
0.9866 ** 0.8939 ** 0.9179 ** 0.8794 ** 0.8880 ** 0.9019 ** 0.8666 ** 

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

a 
0.0116 **       

(0.0000)       

b 
0.9683 **       

(0.0000)       

ν 
6.3634 **       

(0.0000)       

The p-values are enclosed in parentheses, indicated with * significant at 10% and ** significant at 5%. 

All of the coefficients are significant, and the volatility persistence (sum of alpha and 

beta) is very high in all the series, oscillating between 0.90 and 0.999, with large estimation 

of the beta coefficients. This indicates, on the one hand, the heteroscedastic character of 

the series (alpha coefficients are all significantly different from zero) and, on the other 

hand, the existence of medium/long-term impacts of unexpected shock and the im-

portance of the volatility clustering phenomenon in these series, which was already re-

vealed in Figure 4. 

The same occurs with the coefficients a and b, in which their sum is very close to one, 

with values significantly different from zero. This highlights the time varying character of 

covariance and correlations of all the series and reflects a high persistence in their evolution. 

However, the existence of systematic non-constant trends in the estimated evolution of cor-

relations is not appreciated (see off-diagonal cells in Figure 4), but there is an oscillating 

behavior around their mean values. Works such as that of [20] show a persistent long-term 

dynamic correlation between the EU carbon market and fossil fuels. In addition, in China, 

ref. [22] found significant dynamic correlations between the carbon market and stocks of 
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clean energy companies, and [48] between the carbon market and the oil and natural gas 

market. 
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Figure 5. Matrix graph with the estimated dynamic correlation between two variables in the off-diagonal cells and with 

the estimated volatility of the daily returns of the seven series in the diagonal. The estimated constant correlation of a 

VAR(1)-CCC-GARCH(1,1) model is in red. 

COAL series have the lowest values of volatility, due to the lower trading volume in 

the energy market. Moreover, the closure of coal mines and the phasing out of coal use 

for power generation has reduced its importance in this market (more information can be 

seen on https://ec.europa.eu/jrc/en/news/eu-coal-regions-opportunities-and-challenges-

ahead, accessed on 20 July 2021). CLEAN, OIL.GAS and INDUSTRIAL series have lower 

and similar volatilities (see also Figure 2) because, as commented above, they are weighted 

averages of stock prices, which flattens their daily growth. Furthermore, they have high 

positive levels of correlation, which reflects the existence of risk synergy effects between 

them, as the changes of time-varying variances between the two markets will become con-

sistent [20,22]. Volatilities of OIL, GAS.UE and EUA series tend to be the highest (see also 

Figure 2), which along with the difficulty of forecasting fossil fuel prices, could make re-

newables more attractive for consumers and providers. 

With the only exception of EUA, a high value of return volatility is highlighted in 

March 2020 (see Figure 5), coinciding with the start of the COVID-19 pandemic. The EUA 

series presents a great volatility at the onset of phase III, where the way of acquiring al-

lowances changed. EUA price is also directly related with all the series, but with low-

middle sized correlation levels around 0.2. These results are in line with those of [20], who 

related the carbon market with fossil fuels, as well as those of [17,22]who included shares 

of clean energy companies, and those of [48] who incorporated the equity market. 

4.2. Impulse Response Analysis 

In this section, we represent the impulse response functions, in mean, volatility and 

correlations. Section 4.2.1 shows the impulse response curves (univariate) that is to say, 

the effects when a shock occurs in one variable. Section 4.2.2 displays the impulse re-

sponse surfaces (bivariate) or the effects when shocks occur in two variables. 

4.2.1. Shock in a Single Variable 

In this section, we analyze the effects of unexpected shocks in each series on the con-

ditional mean, volatility and correlation of the seven series for different time horizons. 

The selected horizon for conditional volatility and correlation is approximately one year, 

about 200 days, but in the case of the conditional mean, we have reduced this horizon to 

10 days because the effects of shocks decline rapidly. We have worked with impulses from 

2 to 10 times the standard deviation in the absolute value. Lines represent the different 

impulses colored in black, cyan, blue, green and red, respectively. 

• Impulse response curves for the conditional mean 

Figure 6 shows a 7 × 7 matrix graphic with the impulse response functions for the 

conditional mean return of the seven variables. Each row corresponds to the shocked var-

iable and each column to the response of each variable. Therefore, the diagonal contains 

the response of each variable to its shock. We have used the same scale in the off-diagonal 

cells, in order to observe the greatest influences on the returns of all the series more clearly. 

The scale is different only for diagonal cells, as they contain the strongest effects. In all the 

cases, the effects disappear quickly because of the strong mean reversion character of all 

of the series. 

The results of the off-diagonal cells of Figure 6 also show that the influence rapidly 

decays towards zero. The greatest effects occur inside of the three commented blocks of 

the series, due to their high level of intra-connection, while the lowest effects take place 

between series of different blocks. For instance, if a shock occurs in any of the series in the 

third block (OIL, CLEAN, OIL.GAS and INDUSTRIAL), the highest responses correspond 

to the series of this block (see the graphics corresponding to the crossing of rows 3, 5, 6 
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and 7 with the same columns), whereas the impact on the series of the first block (COAL 

and GAS.UE) is almost negligible (see the graphics corresponding to the crossing of rows 

3, 5, 6 and 7 with columns 1 and 2). Clearly, a higher size of the impulse influences a 

greater response in all the variables. 

 

Figure 6. Matrix graph with the mean impulse response curves for several forecast horizons and shock sizes. The off-

diagonal cells contain the response of the conditional mean of one variable, when the shocked variable is a different one 

and the diagonal cells encloses the responses when the shocks are produced on itself (the shocked variable in brackets). 
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• Impulse response curves for the conditional variance 

Figure 7 shows a 7 × 7 matrix graphic with the impulse response curves for the con-

ditional volatility of the seven series. Each row corresponds to the shocked variable 

(marked between brackets in the title of each chart) and each column to the response of 

each variable. In particular, the diagonal contains the response of each variable to its own 

shocks. Again, in the off-diagonal cells we have used the same scale, in order to observe 

more clearly the greatest influences on the volatility of all of the series. For diagonal 

graphics, the scale is different because they contain the strongest effect. 

 

Figure 7. Matrix graph with the volatility impulse response curves for several forecast horizons and shock sizes. The off-

diagonal cells contain the response of the conditional volatility of one variable when the shocked variable is a different 

one and the diagonal cells enclose the responses when the shocks are produced on itself (the shocked variable in brackets). 
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For each series the major volatility impacts are caused as a response to its own shocks. 

With respect to off-diagonal cells, the main impacts correspond to some of the intercon-

nected series. Thus, graphic (1, 2) (graphic (i, j) denotes the graphic corresponding to the 

crossing of row i and column j) shows a negative impact of COAL on GAS.UE, but not the 

other way around (see graphic (2, 1)). Impacts are observed both ways between GAS.UE 

and EUA (graphic (2, 4) and graphic (4, 2)), OIL and OIL.GAS (graphic (3, 6) and graphic 

(6, 3)), CLEAN and EUA (graphic (4, 5) and graphic (5, 4)), CLEAN and INDUSTRIAL 

(graphic (5, 7) and graphic (7, 5)) as well as OIL.GAS and INDUSTRIAL (graphic (6, 7) 

and graphic (7, 6)). Furthermore, in all the cases, a higher size of the impulse influences in 

a greater volatility response. In general, the effects are lasting due to the high volatility 

persistence. 

These results are in line with [20], who found a unidirectional excess volatility of coal 

to EUA, and from the latter to gas for a series that covered a period until September 2014. 

Therefore, in the later period analyzed in our paper, a greater connection between coal 

and gas has been produced, probably due to the change to gas in electricity production. 

Ref. [20] explained that this change could be due to its lower polluting effect and its greater 

technical and economic flexibility, allowing the complementary use of other renewable 

energy sources. Unlike [20], and in line with other authors such as [30], we found excess 

bidirectional volatility between gas and EUA prices, which could also be explained by the 

increased use of gas in electricity generation. In addition, ref. [21] found that the volatility 

of gas prices significantly affects EUA prices, ref. [46] explained the transmission of vola-

tility between the carbon markets and the electric companies, and [47] showed a strong 

link between the performance of the shares of electric companies and emission allow-

ances. Finally, the bidirectional transmission of volatility between CLEAN and EUA is in 

line with the results of [17,40], who showed volatility transmission from carbon market to 

clean energy companies. The rest of the volatility impacts explain the relationship be-

tween OIL prices with OIL.GAS share prices, and between these with industrial activity, 

which also affects clean energy share prices. 

• Impulse response curves for the conditional correlation 

Figure 8 shows a 7 × 7 matrix graphic with the impulse response curves for the con-

ditional correlation between two variables when the shock is produced in one of them. 

Each row corresponds to the shocked variable and each column to the impulse response 

functions of the correlation, between the pair of variables listed on the title of the graphic. 

The diagonal indicates the shocked variable and all of the off-diagonal graphics have been 

drawn with the same scale, in order to clearly observe the greatest influences on the 

changes in correlation of all of the series. 

Figure 8 shows that the greatest impacts (both ways) occur between variables con-

tained in the same block: COAL and GAS.UE on the one hand (graphic (1, 2) and graphic 

(2, 1)) and OIL, CLEAN, OIL.GAS and INDUSTRIA, on the other hand (graphic (i, j); i = 

3, 5, 6, 7; j = 3, 5, 6, 7). Moreover, the correlations of EUA with the rest of the series are also 

affected both ways by their shocks (see all graphics in row 4 and column 4). Again, the 

size of impacts is directly related to the size of the shocks, and their effects are lasting due 

to the high persistence of the covariances. Ref. [20] showed the existence of positive dy-

namic correlations between EUA price and all fossil fuels prices, being higher with coal, 

followed by gas and lastly with oil. Ref. [22] found significant dynamic correlations in 

China between carbon and coal markets, and both with the clean company equity market. 

Ref. [48] showed, also in China, the existence of dynamic conditional correlations between 

the carbon emissions trading market and the oil and natural gas market. It is interesting 

to comment the findings of [20], who showed that increases in volatility, in times of crisis, 

increase the levels of positive dynamic correlation, and, therefore, the risk synergy effects, 

with the opposite effect occuring in more calm periods in the economy, where the effect 

decreases the correlation. 
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Figure 8. Matrix graph with the conditional correlation impulse response curves for several forecast horizons and shock 

sizes. The off-diagonal cells of each row contain the response of the correlation between the shocked variable and each of 

the others. The diagonal cells specify the shocked variable. 
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4.2.2. Shocks in Two Variables 

Given that one of the objectives of the paper is to analyze the performance of the EUA 

market, in this section, we analyze the interactions of EUA with the rest of variables. Con-

cretely, we study the response functions for the conditional mean, volatility and correla-

tion of each variable when the shocks occur simultaneously in EUA and in other variables. 

The organization of this section is the same as the previous one, only now the impulse 

response functions are surfaces instead of curves. 

• Impulse response surfaces for conditional mean 

Figure 9 shows a 6 × 7 matrix graphic with the response surfaces (in this case planes) 

of the one step ahead (horizon 1) conditional mean of all of the seven variables (by column 

and listed on the title of each graph) to bivariate impulses in all pairs of combinations of 

each variable with EUA (by row). For instance, graphic (1, 2) shows the return response 

of GAS.UE (axis OZ) to simultaneous shocks in COAL (axis OY) and EUA (axis OX). The 

size of shocks oscillates from −10 to 10 standard deviations of each series (see axis OX and 

OY), while the increment of the conditional expected return (axis OZ) oscillates from −6% 

(blue) to 6% (red). In this case, the positive obliquity of the plane indicates that positive 

(negative) shocks in COAL and EUA produce an increase (decrease) in the expected 

GAS.UE return. However, shocks of different signs in COAL and EUA tend to offset their 

effects on the expected GAS.UE return. In addition, the degree of inclination of the plane, 

with respect to the plane z = 0 is high, which indicates that the size (in absolute terms) of 

these effects is high. For instance, simultaneous shocks of 10 (−10) standard deviations in 

COAL and EUA are expected to increase (decrease) the GAS.UE return around 5%. 

Figure 9 highlights that the response functions of each series only depend on its own 

shocks, independent of the size of the EUA shocks (see graphics (1, 1), (2, 2), (3, 3), (4, 5), 

(5, 6) and (6, 7)). This fact can be appreciated in the color lines of the plane, which are 

approximately parallel to the OX axis. Analogously, the response of EUA only depends 

on its own shocks because the color lines of the plane are parallel to the OY axis (see 

graphics in column 4). 

Regarding cross-effects (Regarding cross-effects, i.e., effects of bivariate shocks in 

EUA and another series on the response of a third series), column 2 shows that GAS.UE 

is affected by bivariate EUA-COAL and EUA-OIL shocks. However, for the rest of com-

binations, the response of GAS.UE is only affected by the EUA shock (the color lines of 

each plane are parallel to OY axis). Column 1 shows that COAL is only weakly affected 

by bivariate EUA-GAS.UE shocks (see the low inclination of the plane in graphic (1, 2)). 

OIL is affected to a greater or lesser extent by the interaction of EUA shocks, with the 

shocks of other series and the effects of EUA being stronger when combined with the fossil 

fuels and weaker when combined with the stock indices (see column 3). Finally, CLEAN, 

OIL.GAS and INDUSTRIAL are affected by the interaction of the EUA shocks, with those 

of the variables in their block, with EUA having less effect (see graphic (i, j) 5 ≤ i ≠ j ≤ 7). 

Figure 10 displays a matrix graphic with the response surfaces of the one step ahead 

(horizon 1) conditional mean of EUA return to bivariate impulses in all pairs of combina-

tions of the rest of the variables (The impulse response functions of two or more steps 

ahead were insignificant, due to the high mean reversion of all the series and are omitted 

for the sake of brevity). 
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Figure 9. Matrix graph with the response surfaces of the conditional mean of all of the seven variables (by column) to 

bivariate impulses in all pairs of combinations of each variable with EUA (by row). 
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Figure 10. Matrix graph with the response surfaces of the conditional mean of EUA to bivariate impulses in all pairs of 

combinations of the rest of the variables. 

The strongest effects on EUA are exerted by interactions of GAS.UE or OIL shocks 

with the rest (see graphics in columns 1 and 2 and row 2). In all of the cases, the size of the 

impacts increases with the size of the shocks. 

• Impulse response surfaces for the conditional volatility 

Figure 11 presents a matrix graphic with the response surfaces of the one step ahead 

(horizon = 1) conditional volatility of the seven variables (by column) to bivariate impulses 

in all pair combinations of each variable with EUA (by row). For instance, graphic (1,2) 

shows the volatility response of GAS.UE (axis OZ) to impulses in COAL (axis OY) and 

EUA (axis OX). The size of shocks oscillates from −10 to 10 standard deviations of each 

series (see axis OX and OY), while the increment of the expected conditional volatility 

(axis OZ) oscillates from −5 units (blue) to 15 units (red). In this case, the largest increase 

in volatility corresponds to the largest shocks in absolute value with the same sign. The 

largest decreases correspond to the largest shocks in absolute value but with different 

signs.  

This figure highlights that the response functions of the conditional volatility of each 

series only depend on its own shocks, independentl of the size of the EUA shocks (the 

color lines of the surfaces are approximately parallel to axis OX). With respect to the re-

sponse functions of EUA (column 4 of Figure 11), they depend on their own shocks (color 

lines are parallel to axis OY) except when they are combined with GAS.UE shocks (see 

graphic (2, 4)) in which case a weak interaction effect can be observed. According to cross-

effects, GAS.UE is only affected weakly by EUA shocks, except when combined with 

COAL shocks. Finally, CLEAN, OIL.GAS and INDUSTRIAL are also very weakly affected 

by the interaction of EUA with shocks of them (see graphic (i, j) 5 ≤ i ≠ j ≤ 7). 
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Figure 11. Matrix graph with the response surfaces of the conditional volatility of all of the seven variables (by column) to 

bivariate impulses in all pair combinations of each variable with EUA (by row). 

Figure 12 shows a matrix graphic with the response surfaces of the one step ahead 

conditional volatility of EUA to bivariate impulses in all pairs of combinations of the rest 

of the variables. 
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Figure 12. Matrix graph with the response surfaces of the conditional volatility of EUA to bivariate impulses in all pairs 

of combinations of the rest of the variables. 

The strongest effects on EUA are exerted by interactions of GAS.UE shocks with the 

rest of series (see graphic (1, 1) and graphic (2, j) 1 ≤ j ≤ 4)). The strongest effect corresponds 

to the interaction of GAS.UE with CLEAN shocks, when shocks of the corresponding se-

ries occur with the same magnitude and direction, while there is a decrease when the 

direction is different. 

Figure 13 shows a matrix graphic with the dynamic evolution of response surfaces of 

the conditional volatility of each variable to bivariate impulses in all pairs of combinations 

of each variable with EUA, which contain the most important effects. Each row corre-

sponds to the response of each variable and each column to a temporal horizon. 

It can be seen that the shape of the impacts surface is maintained over time and de-

creases as the time horizon grows, although with different speeds that increasingly de-

pend on the persistence variance of each series (see αi + βI from Table 4). For instance, 

notice the high persistence in GAS.UE (row 2) and the low persistence in INDUSTRIAL 

(row 7). 

• Impulse response surfaces for the conditional correlation 

The analysis of the conditional correlation surfaces revealed that the only significant 

responses were those corresponding to the combination of shocked variables. For this rea-

son, Figure 14 shows a matrix graphic with only the dynamic evolution of response sur-

faces of the conditional correlation between each pair of variables to their own shocks. For 

instance, graphic (1, 1) shows the change of the conditional correlation between COAL 

and GAS.UE (axis OZ) to simultaneous shocks in COAL (axis OY) and GAS.UE (axis OX). 

The size of shocks oscillates from −10 to 10 standard deviations of each series (see axis OX 

and OY), while the increment of the expected conditional correlation (axis OZ) oscillates 

from −1 units (blue) to 1.5 units (red). The profiles of all surfaces are very similar and show 

that an increase in the correlation is produced when shocks of the corresponding series 

occur with the same magnitude and direction, while there is a decrease when the direction 

is different. 
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Figure 13. Matrix graph with the dynamic evolution of response surfaces of the conditional volatility of each variable to 

bivariate impulses in all pairs of combinations of each variable with EUA. Each row corresponds to the response of each 

variable and each column to a temporal horizon. 
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Figure 14. Matrix graph with the response surfaces of the conditional correlation between all pairs of combinations of two 

variables to bivariate impulses on themselves. 

Figure 15 shows the dynamic evolution for different horizons of the response sur-

faces of the conditional correlation between each variable and EUA in a matrix graphic. 

Each row corresponds to each pair of variables and each column to a temporal horizon. 

The effects remain almost intact after 10 days but decrease considerably after 25 days and 

have practically disappeared after 50 days. This decrease depends on the value of a + b 

(see Table 4), which is the same for each pair of variables. 

Once this in-depth analysis of the impulse response functions of conditional mean, 

volatility and correlation had been carried out, we analyzed the effects of EUA on the 

returns and the risk of the rest of variables and vice versa. 

If we analyze the impulse response functions of conditional mean, i.e., the expected 

returns of the series, we notice that the impacts of EUA increase and last for one day due 

to the existence of a strong mean reversion (see row 4 of Figure 6). The most important 

impacts are exerted on itself and on GAS.UE and OIL Furthermore, the effects of EUA 

shocks are enhanced by shocks that affect other variables, when they are of the same sign 

and are offset if they are of a different sign (see Figure 9). Symmetrically, the shocks of 

these two variables, both individually (see column 4 of Figure 7) and combined with 

shocks of other variables (see Figure 10), affect the return of the EUA. In this case, the 

effects last for two days and are positive in the first day and negative in the second, thus 

reflecting the existence of a corrective effect typical of the stock markets. 

If we consider the responses in volatility (i.e., risk), the most significant impacts of 

the EUA are exerted on its own volatility and on that of the GAS.UE (see row 4 of Figure 

7). The existence of an enhancing effect is only observed when combined with a COAL 

shock (see column 2 of Figure 11). Symmetrically, the most significant effects on the vola-

tility of EUA correspond to GAS.UE shocks both individually (see column 4 of Figure 7) 

and combined with shocks from other variables (see graphic (2, 4) of Figures 11 and 12). 

In both cases, the persistence of these effects is high (see row 4 and column 4 of Figures 7 

and 13) and their values increase with the absolute value of the impacts. 

Finally, taking into account the correlation responses, the most significant impacts on 

the correlations of the EUA with another variable are exerted by the shocks that affect 

them. These impacts increase the value of the correlation and, therefore, the possibility of 

a risk synergy effect between them. This effect is persistent (see row 4 and column 4 of 

Figures 8 and 15) and is bigger, the greater the absolute value of the shock. Furthermore, 
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this effect is enhanced if shocks of the same sign are produced simultaneously in both 

variables (see Figure 15). 

 

Figure 15. Matrix graph with the dynamic evolution of response surfaces of the conditional correlation between each 

variable and EUA to bivariate impulses of different size on themselves. Each row corresponds to each pair of variables 

and each column to a temporal horizon. 
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4.3. Optimal Portfolio Weights 

The importance of identifying the spillover effect of volatility and correlation in a 

dynamic way is crucial to efficiently managing investment portfolios and to carrying out 

optimal diversification of assets. This intelligent management allows for reducing the risk 

and controlling the changes that may occur, due to the economic situation in general or 

greater restrictions with the mechanisms that adjust the supply of allowances. 

In this section, we use the results of the estimated VAR(1)-DCC(1,1)-GARCH(1,1) 

model in Section 4.1 to investigate portfolio diversification opportunities amongst differ-

ent alternative energy financial markets. For this aim, and given that most of investors are 

risk averse and prefer less risk for the same level of expected return [54], we will focus on 

risk reduction and Markowitz’s minimum variance portfolios. Their weights are obtained 

sequentially, by minimizing the volatility of the portfolio subject to a required return con-

straint. This problem can be formulated as: 

min
𝛚t

𝛚t
′𝐇t𝛚t 

s. t. 𝛚t
′𝛍 = 1 

 

where 𝛚t = (ω1,t, … , ωN,t)′ is the vector of portfolio weights for time t chosen at time t − 

1, Ht is the conditional variance and covariance matrix of a vector of returns for time t and 

µ is the assumed vector of returns. The solution to this problem is: 

𝛚t =
𝐇t

−1𝛍

𝛍′𝐇t
−1𝛍

 (1) 

Note that ∑ ωi,t
N
i=1 , with 𝜔𝑖,𝑡 being the share on asset i for time t, generally will not 

need to be equal to 1. Indeed, 1− ∑ ωi,t
n
i=1  is the share in the risk-free asset. 

This optimal portfolio selection procedure assigns greater weight to assets with high-

expected return and low expected variance, and vice versa. As on the one hand, investors 

with different expected returns will hold different portfolios and, on the other hand, it is 

impossible to know the true vector of expected returns, we will carry out the optimization 

process for a wide range of hypothetical time-invariant vectors of expected returns, which 

are not required to be the true one. Different investors at different times have different 

vectors of expected returns; therefore, we take a set of return vectors capturing possible 

and different scenarios, where returns could be high, and others in which they could be 

low or even zero. Asset pricing theory suggests that the unconditional expected returns 

for stocks should be positive, and that stocks should have the highest expected return. So, 

following [55–57], we do not consider return vectors with all of their components nega-

tive, because this does not respond to reality. The selected vectors of returns have to be a 

proxy of expected returns, and the prior belief of investors is that those returns should be 

non-negative, and even as high as possible. Once we select that set of return vectors, we 

can calculate the corresponding weights for each of them by applying (1), and conse-

quently we obtain the optimal portfolio. The last step of the selecting process of the final 

optimal portfolio is to take the weight for each of its assets and the average of the weights 

obtained in the different optimal portfolios for each return vectors of the considered set. 

With this way of acting, in our particular case, we have followed three different strat-

egies to determine the set of return vectors. In the first case, we take the no overlapping 

134 monthly averages of the observed returns included in the analyzed period, and we 

discard five vectors whose components are all negative. In the second case, we calculate 

the no overlapping 45 quarterly averages included in our period, discarding two vectors 

in which all of their components are negative. Finally, in the third case, we have consid-

ered the no overlapping 13 yearly averages without discarding any. In order to compare 

and select the best option of the three strategies we follow the approach of [56]. 

Table 5 provides the t-statistics of the Diebold–Mariano test (see details in the Ap-

pendix A) to compare the volatilities of two dynamic portfolios. The null hypothesis of 

this test is that there is no difference between the portfolio variances. In our case, we have 
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compared the portfolios selected by the three strategies (monthly, quarterly and annually) 

described earlier. The t-statistics provided in the table are the result of comparing the 

strategy in the column with the one in the row. A negative (positive) value of the t statistic 

is evidence in favor of better (worse) performance, in terms of volatilities, of the row strat-

egy. We can observe that the strategy with a statistically significant risk reduction is the 

second one, corresponding to that obtained with the 43 quarterly return averages. 

Table 5. Diebold and Mariano test with heteroscedasticity correction. 

 Monthly Quarterly Yearly 

Monthly  2.2707 −2.1427 

Quarterly −2.2707  −2.5858 

Yearly 2.1427 2.5858  

All the results are significant at 5%. 

In addition, Figure 16 displays in a two-panel graphic the evolution of the daily port-

folio volatility (left panel) and the daily evolution of the portfolio return (right panel) ob-

tained with the three strategies (red lines correspond to the monthly strategy, black lines 

to the quarterly strategy and blue lines to the yearly strategy). The volatilities pattern (left 

panel) is similar in the three strategies, but the oscillations are clearly greater in the yearly 

average strategy and smaller in the quarterly one, causing the Diebold and Mariano test 

to select this latter strategy as the best. The profile in the three volatility lines indicates 

that there are two periods of high volatility, which correspond to April 2013 and March 

2020. The maximum in April 2013 corresponds to the onset of phase III with a change in 

the allocations of allowances and the regularization of the EU ETS because there was a 

surplus of allowances due to the economic crisis. The EUA price fell from 4.71 to 3.1 and 

the on following day to 2.5; therefore, in total, it had a drop of more than 50%, which 

caused high volatility, which is reflected in the composition of the portfolio. The second 

most important peak corresponds to March 2020 and coincides with the declaration of the 

health crisis due to the COVID-19 pandemic, which unleashed a great storm in the mar-

kets, producing high volatility (see Figure 5). With respect to the right panel of Figure 16, 

which displays the daily evolution of the portfolio return, we can observe a more homo-

geneous behavior in the oscillation levels of returns throughout time than in the case of 

individual assets (see Figure 2), which shows a higher control of the inversion risk. 

 

Figure 16. Evolution of the daily portfolio volatility (left panel) and of the daily portfolio return (right panel) for the three 

strategies (monthly in red line, quarterly in black line and yearly in blue line). 

Figure 17 shows only the evolution of the weights of the optimal portfolio corre-

sponding to the quarterly strategy. The message obtained from the other two strategies 

(monthly and annual) is very similar and they are not shown for the sake of brevity. 



Mathematics 2021, 9, 1787 33 of 37 
 

 

 

Figure 17. Evolution of the weights of the optimal portfolio composed by fossil fuels, energy stocks, 

EU allowances and a risk-free asset. 

The analysis of the optimal weights shows how the clean energy sector has become 

important in optimal diversification strategies with the passage of time. Clearly, CLEAN 

is the asset with the greatest weight in the portfolio 74.72% of the days, followed by EUA 

with 7.74%. Therefore, it is clear that clean energies have been playing a relevant role in 

recent years. To diversify the risks, the portfolio has to go short on selling OIL.GAS asset 

on 91.47% of the days. This is due to those assets tending to have lower volatility levels 

throughout the analyzed period. Raw materials have specific moments in which they have 

the largest weights: COAL has been 5.83%, GAS.UE, 7.52% and OIL 3.18%. All of the EUA 

weights were positive with intermediate values, between 8% and 35%, due to its higher 

levels of volatility. 

It is observed that the weight in CLEAN was the largest from the end of 2016 to Feb-

ruary 2020, where it fell due to the pandemic. The closure of most thermal power plants 

at the beginning of 2020 caused a sharp fall in the price of COAL, which may explain the 

increase in its weight in the portfolio in the first quarter of 2020. We can see that the weight 

of OIL was below CLEAN since 2017, but the COVID 2019 crisis has caused interest in 

renewable energies to be lost and OIL has become important again. This fact could be due 

to markets taking the economic recovery for granted. The derivative markets, in which 

raw materials, such as oil are traded, move with expectations, and these are of economic 

reactivation due to medical advances and vaccination processes. The COVID-19 vaccine 

is promoting better forecasts for the economy, in which the rise in fuel prices plays an 

important role. When dealing with expectations, investors believe that these prices will 

continue to rise until a real balance between supply and demand is produced. 

5. Conclusions 

This paper has carried out a dynamic multivariate study of the evolution of return of 

financial assets, related to the energy market (fossil fuels, energy companies and industrial 

firms). For this, the VAR-DCC-GARCH family of models has been used, which provides 

a very adequate framework to describe their joint evolution, taking into account their het-

eroscedastic nature, as well as the temporal evolution of the variances and the correlations 

between these series. This allows, on the one hand, analysis of the impulse response func-

tions of these moments before unexpected shocks affecting each series and, on the other 

hand, to capture the patterns existing in the joint evolution of the series in terms of the 

binomial risk-return, which constitutes crucial information for the design of investment 

portfolios. In particular, special attention has been paid to the temporal evolution of the 

prices of the CO2 European Emission Allowances, in order to know if these prices are 
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helping to achieve the objective of encouraging the use of renewable energy and reducing 

that of dirty energy so that the EU can meet climate objectives. 

Our results show the existence of three groups of assets with little influence on each 

other. One group is made up of COAL and GAS.UE, a second block is OIL and the stock 

indices of energy and industrial companies and, lastly, a third block with only the allow-

ance prices. The first two groups tend to move simultaneously in the same direction with 

significantly positive correlations, and with high persistence in volatility. While it is true 

that the correlations change over time, they fluctuate relatively little around an average 

value, and also reflect high persistence. 

Regarding the return of CO2 allowances, its correlation is positive with all the returns 

series, although this is not very strong. The most important impacts of the EUA shocks on 

the expected returns and the risk are exerted on itself and on GAS.UE, and vice versa. The 

impact on mean lasts at most two days, and they are enhanced by shocks that affect other 

variables when they are of the same sign, and are offset if they are of a different sign. The 

persistence of the impacts on volatility is high and an enhancing effect of the EUA on 

GAS.UE is only observed when combined with a COAL shock, while this pushing up 

effect occurs on EUA if the GAS.UE shock is combined with shocks from other variables. 

Finally, the most significant impacts on the correlations of the EUA with another variable 

are exerted by the shocks that affect them. These impacts increase the value of the correlation 

and, therefore, the possibility of a risk synergy effect between them. This effect is persistent 

and is bigger, the greater the absolute value of the shock. Furthermore, this effect is en-

hanced if shocks of the same sign are produced simultaneously in both variables. 

In terms of investment, this paper has dynamically calculated the composition of a 

portfolio, with minimal volatility and required return of assets related to fossil fuels, al-

lowances and energy companies. The results show the importance of investing in clean 

companies, due to their lower volatility, while also offsetting the risk with short invest-

ments in oil and gas companies due to their lower volatility. These weights increase sig-

nificantly in economic boom years, in which clean companies tend to be an asset to be 

taken into account, due to their low levels of volatility and increased return. In times of 

crisis, however, its weighting falls in favor of fossil fuels and allowances. All of this 

achieves returns with more homogeneous oscillation levels, only altered by unexpected 

situations, such as, for example, the current pandemic, which has significantly increased 

the levels of uncertainty in all of the series analyzed. 

Although, from the speculation point of view, investing in the EUA does not play a 

relevant role, but an indirect influence in favor of the environment is observed, which is 

highlighted with the growth of the weights of clean energy assets in the optimal portfolio 

with time. This result highlights the declining of dirty energies and the rising of the clean 

energy market, also amongst the investment community, which might be an indication of 

the progress towards the energy transition to renewables sources, within a circular econ-

omy perspective. Therefore, this shows that the EU ETS is achieving its goals and that 

clean energy companies, aligned with their role towards socially responsible initiatives, 

could also gain acceptance in terms of investments, which would be beneficial for the en-

vironment. 

From our point of view, the information provided by our results may be useful for 

policymakers (European commission) when evaluating the impact that the restrictions 

imposed on the carbon market by the MSR have had on investment in assets of energy 

and industrial companies. In addition, our results could make investments in green and 

clean energy assets more appealing to investors, which indirectly have positive implica-

tions regarding social and economic development. Therefore, this could affect the welfare 

of clean and green investments, given the evidence on the utility of these renewable en-

ergy investments in mitigating the downside risk of their competent and counterpart dirty 

energy assets. 

Despite our good results, it would be interesting to carry out an economic valuation 

of the volatility in this field, suggested by [55,56]. This future research would take into 
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account more general MGARCH models and the risk aversion of the investor. Addition-

ally, it could be interesting to extend our results by investigating the dynamic directional 

information spillover of return and volatility between the four markets: fossil fuels, en-

ergy, industrial stocks and EUA in line with [58]. 
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Appendix A 

Diebold–Mariano Test to Compare the Volatilities of Two Dynamic Portfolios 

Let {𝛍k; k = 1, 2,3} the hypothesized vector of the returns determined by each one of the 

three strategies (monthly, quarterly, yearly) 

Let {𝐇𝐭 = 𝐯𝐚𝐫(𝐫𝐭|𝓕𝒕−𝟏); 𝐭 = 𝟏, … , 𝐓} the estimated conditional covariance matrices of {rt; t 

= 1, … ,T} 

Let {𝐰𝒕
𝒌 =

𝐇𝐭
−𝟏𝛍𝐤

𝛍𝐤′𝐇𝐭
−𝟏𝛍𝐤 ; 𝐭 = 𝟏, … , 𝐓; 𝐤 = 𝟏, 𝟐, 𝟑} the minimizing volatility weigths of the port-

folios 

Let {𝛑𝐭
𝐤 = (𝐰𝐭

𝐤)′(𝐫𝐭 − �̅�); 𝐭 = 𝟏, … , 𝐓; 𝐤 = 𝟏, 𝟐, 𝟑} the portfolio returns. 

As [55] we construct the squared returns differences between each pair of strategies 

(k1, k2) ∈ {1, 2, 3} × {1, 2, 3} with k1 ≠ k2 

ut
(k1,k2)

=  (πt
k1)

2
− (πt

k2)
2
; t = 1,….,T  

and we adjust these differences by the geometric mean of the two variances estimators 

vt
(k1,k2)

= ut
(k1,k2)√2(μk1′Ht

−𝟏μk1)(μk2′Ht
−1μk2)  

in order to correct for heteroscedasticity. 

Let VT = (𝐯𝟏
(𝐤𝟏,𝐤𝟐)

, … , 𝐯𝐓
(𝐤𝟏,𝐤𝟐)

)
′
 and we set up the model 

VT = βv1T + εv,T  

where 1T is a vector of T ones and εv,T is an error term. The null hypothesis is H0: βv = 0 

and we use a Diebold–Mariano test based on 𝐓𝟏/𝟐𝐆𝐯
−𝟏/𝟐

�̅�  → N(βv1T,IT) where �̅� =
𝟏

𝐓
∑ 𝐕𝐭

𝐓
𝐭=𝟏 , Gv is an heteroscedasticity and autocorrelation consistent (HAC) estimator of the 

covariance matrix estimator of �̅�. More details can be found in [55]. 
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