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Abstract: Deep eutectic solvents are liquid mixtures of solid components at room temperature, which
present exceptional properties: high solvent capacity, high biodegradation, low volatile organic
compound character, and relatively low toxicity. Furthermore, there are an important number of
DES described, formed by different components and ratios, and thus, the studied applications are
also numerous. In this review, we focused on the applications related to health. One of the most
promising applications of DES is the development of oral liquid formulations of poorly soluble active
pharmaceutical ingredients, although it currently remains at an early stage. We have analyzed the
potential and limitations of DES with this regard. Furthermore, DES have been used as synthesis
media. In this work, we revised the use of DES to obtain bioactive natural products via synthesis
or extraction process. Finally, the usefulness of DES in other interesting applications for promoting
health has been also examined: this is the case of genomics studies, nano-carriers for the encapsulation
of anticancer drugs or stabilization of samples for medical purposes.

Keywords: DES; NADES; deep eutectic solvent; applications; natural compounds

1. Introduction

The scientific and technological progress carried out over time has resulted in many
improvements in the quality of life, but also in visible damage and overexploitation of
natural sources. The concept of green chemistry, established by Anastas and Warner, ap-
peared as a sustainable development tool [1]. According to the authors, green chemistry
is defined as the design of chemical products and processes that reduce or eliminate the
use or generation of hazardous substances [1] and is based on 12 principles that give
guidelines about the chemical processes, synthesis, use of raw materials and chemicals,
energy efficiency, security, and health issues with the aim of moving toward sustainability.
In the last decades, the development and use of new solvents, which follow the assumption
of the green chemistry principles, have increased considerately with the objective of sub-
stituting polluting traditional solvents. Moreover, it is necessary that these new solvents
show similar physicochemical properties to traditional solvents and are efficient for the
applications desired. In addition, a low toxicity to the environment and health and a high
biodegradability is necessary to promote their use. These kinds of solvents can be named
as green solvents [2–4].

In the last few years, a new class of substances have emerged as promising green
solvents, the so-called deep eutectic solvents (DESs). These new DESs have emerged as
a realistic and tighter alternative than previous attempts [5,6], providing a new type of
substance with better environmental and health properties, low production costs [7], and
better biodegradability profiles [8].

DESs can be defined as a mixture of two or more chemicals (hydrogen bond donors
and acceptors) that are solid at room temperature but when combined at a particular molar
ratio, present a melting point depression and become liquid [9]. Generally, the components
of the mixtures are safe and cheap [10]; more typical are quaternary salts such as choline
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chloride or betaine, but others such as thymol, menthol, decanoic, or lauric acid have been
used [11], acting as hydrogen bond acceptors. As hydrogen bond donors, it is common to
use urea, amino acids, sugars, alcohols, amides, amines, or carboxylic acids [12,13].

In fact, the components of DESs are directly associated with their properties and
thus can be designed by properly combining the components [10]. In general, DESs show
several properties such as low preparation costs, environmentally-friendly, wide polarity
range, low vapor pressure and volatility, non-inflammability, thermal and chemical stability,
biodegradability, low toxicity, etc. Additionally, they present many possible combinations
to obtain different kinds of solvents depending on their uses [14,15]. Components of DESs
can interact through intermolecular forces, not only via covalent or ionic bonds and thus
are considered as good candidates to replace ionic liquids or traditional solvents [16].

A few years ago, a new type of DES arose when Choi et al. [17] noticed that mixtures
of natural products such as choline, sugars, and amino acids had a similar behavior to
that of a DES when combined properly. These authors named these products as natural
deep eutectic solvents (NADESs) [12]. At least 174 DESs have been described in the
literature [16].

Due to the nature and versatility of DESs, these mixtures are attracting attention
from the academic and industry sectors. It has been demonstrated that DESs can be
used for many applications such as synthesis [18–20], separation processes [21,22], ex-
traction [23–28], biocatalysis [29], nanomaterials, biotechnology [12,13], electrochemistry
[30,31], food [32], cosmetics, pharmaceuticals [33–38], or as a biofuel [12,14,16,25,39]. DESs
are also useful in the pharmaceutical industry as excipients for the delivery of hydrophobic
drugs or as a vehicle [40]. In fact, the pharmaceutical industry requires the use of organic
solvents as media for poor soluble drugs and DESs seem to be promising alternatives in
this area [33]. Considering some of these properties, in this work, a revision focused on
the health field applications was carried out. Figure 1 shows the most important DESs,
properties, and main applications of this type of mixture.
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2. Applications Related to Peculiar Solubility Properties of DESs

Considering the growing interest in the use of solvents which allow solubility to be
improved in health application, DESs seem to be a good alternative [41]. Therefore, a
solution for drugs with poor water solubility is necessary. Currently, to solve this problem,
some mechanisms have been used such as new dosage forms, use of other chemical
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structures (salts, esters), prodrugs, active metabolites, different routes of administration,
etc. [42].

In fact, the use of adequate media for dealing with active pharmaceutical ingredients
(APIs) with a poor water solubility is one of the most important challenges for the pharma-
ceutical industry. It is well known that solubility has a direct relationship on a therapeutic
effect of a drug [43]. In addition, in the last few years, several studies have focused on the
use of eutectic mixtures in the pharmaceutical area with the aim of improving the solubility
and bioavailability of drugs [40,44]. In Figure 2, a scheme of the evolution of these new
solvents is shown.
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Figure 2. Evolution of DESs over time and their relationship with pharmaceutical applications.
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Choline-based DESs are one of the most common eutectic mixtures found. The choline
cation can be combined with different chemicals (alcohols, fatty acids, carboxylic acids, . . . )
due to their ability as hydrogen bond acceptors. These kinds of mixtures allow one to
increase the solubility of diverse drugs [33]. As a matter of fact, a mixture of a choline
chloride-based DES with urea (ChCl:U (1:2)) increased the solubility of benzoic acid and
AMG517 by 80 and 100 times, respectively, and the mixture of the same cation with malonic
acid (ChCl:MaLA (1:1)) reached a solubilization of 320 and 20,000 times higher than that
for the solubilization of danazol and AMG517 with respect to pure water [40]. Similarly,
several reports have indicated that binary and ternary eutectic mixtures have been used to
dissolve itraconazole, piroxicam, lidocaine, and posaconazole and the solubilization ability
was augmented in all situations in comparison to water [45,46].

Other substances such as menthol, borneol, and camphor have been used as hydro-
gen bond acceptors to prepare eutectic mixtures and as vehicles for transdermal drug
delivery, analgesic, antimicrobial, anti-inflammatory, and antitussive compounds [47] of
testosterone, ibuprofen, lidocaine, ubiquinone, captopril, or fluconazole have been used.
For instance, Yong et al. studied the in vitro dissolution of poorly water-soluble ibuprofen
using polaxamer and menthol in an aqueous solution. It was observed that a relation
4 ibuprofen:6 menthol increased its solubility by 2.5, however, when the polaxamer was
included, a 6-fold increase in the aqueous solubility of the drug was found [48]. Kamal
and Haghtalab observed that the solubility of cefixime was increased when a mixture
of cefixime and DES was prepared. In this case, DES was formed by choline chloride
and glycolic acid in a 1:2 molar ratio [49]. The solubility of other active pharmaceutical
ingredients with DES has also been analyzed. Another report has studied the solubility
of nonsteroidal anti-inflammatory drugs (aspirin, acetaminophen, ibuprofen, ketoprofen,
and naproxen) in the presence of deep eutectic solvents, observing that their solubilities
increased by 100- to 5400-fold over water solution [50,51].

In Table 1, a summary of the drug solubility comparison between water and DES
is presented.

Table 1. List of drug solubility in DESs.

Eutectic Mixture Drug

Increased Solubility
with Respect to
Water Solution
(T = 298.15 K)

Reference

Choline chloride and
urea (1:2)

Benzoic acid 80 times [40]

AMG517 100 times [40]

Choline chloride and
malonic acid (1:1)

Danazol 320 times [40]

AMG517 20,000 times [40]

Choline chloride and
glycolic acid (1:2)

Itraconazole 6700 times [45]

Piroxicam 430 times [46]

Lidocaine 2. times [46]

Posaconazole 6400 times [46]

Choline chloride,
glycolic acid, and

oxalic acid (1:1.7:0.3)

Itraconazol 50,000 times [45]

Piroxicam 135 times [46]

Lidocain 81 times [46]

Posaconazole 7400 times [46]

Menthol Ibuprofen 2.5 times [48]

Menthol:Poloxamer 6 times [48]

Choline chloride and
glycolic acid (1:2) Cefixime trihydrate 2418 times [49]
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In addition, other studies have focused on the application of DESs in terms of improving
solubility, and more specifically for pharmaceutical applications. Thus, Araya-Sibaja et al.
improved the solubility of the drug lovastatin in three binary eutectic mixtures with three
different carboxylic acids (benzoic, salicylic, and cinnamic carboxylic acids), being higher
for the system formed with salicylic acid. Moreover, the systems showed stability since
there was no dissociation and the results achieved indicated that binary eutectic mixtures
can be excellent for the preparation of pharmaceutical formulations [44]. Accordingly,
another report observed that the use of a DES, composed of betaine and urea, stabilized
two therapeutic B-lactam molecules, clavulanic acid and imipenem, with respect to the
use of water and with no effect on their antimicrobial activity [52]. On the other hand,
NADES can play an important role in small-molecule formulations such as hydrogels
or as a vehicle of lipophilic bioactive ingredients [16]. Moreover, NADES also have an
analogous structure to cyclodextrin, and thus can be used as an excipient in hydrophobic
drug delivery systems [53].

Thereby, DESs could be interesting alternatives in pharmaceutical formulations, how-
ever, more knowledge is necessary at preclinical and clinical phases of implementation as
well as their toxic effects in organisms.

Pharmaceutical Applications: Therapeutical Deep Eutectic Solvent-THEDES

The development of bioactive eutectic systems containing active principles increases
the potential of these systems and opens a wide spectrum for future developments in
pharmaceutical and biomedical applications.

One of these techniques, which can be used to increase the solubility of drugs, is related
to the use of THEDES. A THEDES (DES + active pharmaceutical ingredient (API)) and their
transdermal drug delivery was first described in 1998 by Stott et al. [54] who showed some
mixtures of an API with different enhancers of skin permeation (terpenes). Additionally,
two manuscripts reported an increase in the solubility of benzoic acid, danazol, and
griseofulvin, an itraconazole using urea–choline chloride and malonic acid–choline chloride
DES [9,40].

At the topical level, it was in the 1980s when the first eutectic mixture formulation (EMLA)
was marketed, containing an 80% eutectic mixture of lidocaine and prilocaine [33,55]. In
another study carried out by Gohel and Nagori, the release of fluconazole in a system
made up of this type of substance and prepared as a transdermal spray was carried out
to evaluate the antifungal activity in vivo in patients with ringworm was also evaluated.
The results were also positive, demonstrating that this type of system improves drug
release [56]. Finally, it has also been proven that some NADES combined with collagen
allowed for the chemotactic properties and structure of collagen in topical formulations to
be retained [57].

In a study carried out by Wang et al., the lidocaine:ibuprofen THEDES was developed
and the permeability of API through a porous membrane was reported. Additionally, it
was demonstrated that some differences between the dissolution and permeation of the
API because of the formulation [9,58].

Some other THEDES based on choline chloride and menthol with acetylsalicylic acid,
benzoic acid, and phenylacetic acid has been also described. The dissolution rate was
studied, and it was found that the antibacterial activity of the API was retained for all
THEDES [9].

Recently, a paper has been published using a choline and geranic acid deep eutectic
solvent. In this case, this compound has been used for the treatment of rosacea; the study
describes how to apply this THEDES from the synthesis to the medical application and
shows the scale-up, characterization, stability analysis, mechanism of action, dose analysis,
GLP toxicity, and human clinical study [59].

One of the key points that limit the use of THEDES is the lack of evidence related with
safety, toxicity, and some other pharmaceutical issues such as pharmacokinetic behavior.
However, there have been some studies that point out the safe use of most DESs.



Appl. Sci. 2021, 11, 10156 6 of 18

Regarding the toxicity of DES, it has been tested both in vitro and in vivo. Focusing
on in vitro tests, several analyses in bacteria (Allivibrio fischeri, Escherichia coli, Staphylo-
coccus aereus, Salmonella enteriditis, Aspergillus niger, Listeria moncytogenes, Mycobacterium
tuberculosis, and propionilbacterium) [60–62], virus (Herpes simplex), fish cells (CCO) [63],
human cells (MCF-7, PC3, A375. OKF6, HepG2, HT29, and H413) [64], fungi (Aspergillus
niger, Candida albicans, Candida cylindracea, Lentinus tigrinus, Panerochaete chysosporium) [47]
and plants (Triticum aestivum or Allium sativum) have been measured [65] while in vivo,
some studies in animals (mice) [66] and marine organisms (Hydra sinersis and Cyprimus
carpio) have been carried out [67,68].

Silva et al. studied the therapeutic role of DESs based on menthol and saturated
fatty acids. They prepared and characterized some DESs using menthol and lauric acid,
stearic acid, and myristic acid. After the preparation, they studied their cytotoxicity in the
HaCaT cell line. They also carried out an antibacterial assay using Staphylococcus aureus,
Staphylococcus epidermis, Pseudomonas aeruginosa, and Escherichia coli. No significant halo has
been observed for pure compounds, however, all THEDES presented antimicrobial activity
being more effective at higher concentrations. These results can be explained because of the
molar ratio (1 menthol:8 saturated fatty acid). Menthol amount was lower in THEDES than
the pure compound, nevertheless, a synergistic interaction between menthol and saturated
fatty acid has been observed [14]. Additionally, Silva et al., in another paper, prepared
a THEDES, formed by perillyl alcohol and ibuprofen, and studied their antimicrobial
activity and the cytotoxic profile in colorectal cancer (CRC). They observed that this system
presented a possible alternative to conventional therapies because of its properties against
microorganisms and toward CRC cells [69].

Roda et al. developed a THEDES delivery system for the treatment of tuberculosis.
The system was prepared by encapsulating L-arginine based THEDES with a lipidic matrix
and using supercritical technology. They analyzed the cell viability and fibroblast with
THEDES encapsulated and concluded that the system was non-cytotoxic [70].

Pereira et al. evaluated the THEDES system based on limonene and saturated fatty
acids, menthol, or ibuprofen for cancer treatment. The THEDES system presented an-
tiproliferative properties, however, they observed that THEDES formed by ibuprofen and
limonene (1:4) was able to inhibit HT29 proliferation without compromising cell viability.
In addition, they observed that this THEDES (ibuprofen and limonene) increased the
anti-inflammatory activity, an important key to cancer treatment [71].

THEDES seems to be another promising solvent in order to improve the solubilities
of the drugs and is important in parameters such as absorption and permeability. Their
characteristics allow them to have good applications in the biomedical and pharmaceutical
sectors. In this sense, several terpenic compounds, mainly menthol and camphor, have been
demonstrated to improve solubility and dermal adsorption of different drugs, allowing for
different formulations such as in the field of permeation enhancers [33].

Table 2 summarizes the successful development of several THEDES systems (API-DES)
and the different kinds of studies carried out.
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Table 2. Examples of API-DES reported by the literature, year, experimental study, achievement, and administration route.

THEDES System Year Experimental Study Achievement Administration Route Reference

Ibuprofen:L-menthol
Ibuprofen:thymol

Ibuprofen:D-limonene
Ibuprofene:cymene

Ibuprofene:L-menthone

1998 Human epidermal membranes Solubility enhancement Transdermal [54]

Methyl nicotinate:ibuprofen 2000 physicochemical studies Enhance transdermal delivery Transdermal [72]

Menthol:coenzyme Q10 2002 Physicochemical studies Formulation of self-nanoemulsified drug delivery system
(SNEDDS) to improve the solution of coenzyme Q10 Oral * [73]

Cannabidiol:phosphotidylcholine 2003 Mice Enhance transdermal delivery and better accumulation
(muscle and skin) Transdermal [74]

Fluconazole:camphor:menthol 2009 Rat skin (antifungicide activity, effective in vivo activity) Improved drug transport Transdermal [56]

ritonavir:gelucire 2010 Albino Wistar rats Increase of rate of absorption Oral [75]

Itraconazole:phenol 2012 Franz diffusion cells fitted with excised hairless mouse
skins Permeability enhancement Topical [76]

Ibuprofen:lauric acid
Ibuprofen:palmitic acid 2013 Physicochemical studies Information drug-excipient and its compatibility Topical * [77]

Nimesulide:PEG
Nimesulide:urea 2014 rats Increase of the analgesic effect Oral [78]

Coenzyme Q10:lauric acid 2015 Physicochemical studies Solubility enhancement Topical [79]

Lidocaine:tertracaine
Lidocaine:camphor 2015 physicochemical studies Liquid formulation Topical * [80]

acetylsalicylic acid:ChCl
acetylsalicylic acid:menthol 2016 Microbiology studies in E. coli, S. aureus, B. subtilis. Enhanced transporters and delivery vehicles for bioactive

molecules Oral * [9]

Ibuprofen:lidocaine 2017 Transdermal Bioavailability in rats Enhancers of skin permeation Transdermal [81]

Resorcinol:ChCl
acetylsalycilic acid:ChCl

salicylic acid:ChCl
Paracetamol:ChCl
ranitidine:glycerol
diphenine:glycerol

phenformin:glycerol
ticlopidine:glycerol
tetracycline:glycerol

ranitidine:urea.
adiphenine:urea

adiphenine:acetylsalycilic acid

2017 Physicochemical studies Solubility enhancement Oral * [82]
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Table 2. Cont.

THEDES System Year Experimental Study Achievement Administration Route Reference

Paeonol:menthol 2017 In vitro permeation and deposition study on mouse skin Transdermal delivery Transdermal [83]

Ibuprofen:menthol 2017 Physicochemical studies Solubility and permeability increases Oral * [84]

Felodipine:nicotinamide
Felodipine:malonic acid 2017 Animal model Improvement of AUC compared to free drug solution Oral [85]

Hydrochlorothiazide:atenolol 2017 Female Winstar rats Decrease in systolic blood pressure was more pronounced
when it was compared to physical mixtures Oral [86]

alpha-eprosartan:p-hydroxy
benzoic acid 2017 Female Sprague-Dawley rats Oral bioavailability and AUC increases Oral [87]

Ibersartan:nicotinic acid
Ibersartan:ascorbic acid 2018 pharmacokinetic/pharmacodynamic studies and

oxidative stress analysis in rats Improvement of AUC Oral [88]

Caffeine:meloxicam
Caffeine:aceclofenac
Caffeine:flurbiprofen

2019 Male Winstar
rats Increase in solubility and effect Oral [89]

Ibuprofen:Limonene 2019 HT29 cell line Enhancement of anti-inflammatory activity of ibuprofen Oral * [71]

Ibuprofen:1-tetradecanol
Ibuprofen:1-octadecanol
Ibuprofen:1-docosanol

2020 Physicochemical studies In vitro release Topical * [90]

Diacerrein:fumaric acid 2020 Pharmacokinetic study in Sprague-Dawley rats Improvement of Cmax and AUC Oral [91]

Diacerin:2,4-dihydroxybenzoic acid 2020 Pharmacokinetic study in Sprague-Dawley rats Higher bioavailability and lower tmax compared to pure
drug and Oral [92]

Citric acid:L-arginine:H2O 2020 L929 fibroblasts and system characterization Design and development of drug formulation Inhalatory * [70]

Lidocaine:ketoprofen
Lidocaine:flurbiprofen
Lidocaine:aceclofenac
Lidocaine:meloxicam
Lidocaine:tenoxicam

2021 Albino male rabbit ear model. Skin permeation studies
using vertical glass Franz diffusion cells

Use of lidocaine as eutectic co-former for enhanced skin
delivery of NSAIDs. Transdermal [93]

Ezetimibe:simvastatin:fenofibrate 2021 Physicochemical studies New way of selecting therapeutic concentrations Oral * [94]

Curcumin:choline geranate deep
eutectic solvent 2021 Domestic pig ears

Increase the transdermal permeation of curcumin, insulin,
and bacteriophage particles. It will be use as non-invasive

delivery
Transdermal [95]

* This information is not described in the original manuscript, however, it was considered according to the original API application.



Appl. Sci. 2021, 11, 10156 9 of 18

3. DES as Synthesis Media of Natural Based Chemicals

DESs have been widely used as green synthesis media since early 2000, timidly at
first (with just a dozen articles a year), and with much greater intensity a few years later
(Figure 3, Web of Science).
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During 2000, DES have been used both as the solvent of the reaction and the source of
the template (structure-directing agents); the so called-ionothermal synthesis. This strategy
provided opportunities to develop new synthetic routes for the preparation of several
organometallic chemicals [96–101].

At the early stage of the research, the green character of these compounds is already
visible (biodegradability, reuse, low volatility) while unexpected catalytic properties have
been found [102,103]. Quickly, DESs began to be studied as a mean of synthesis in the
preparation of many types of chemical substances of a very different nature; inorganic
materials such as silicas, metal charlcogenides, metal structures, organosilicas, metal
oxides or metal salts [104], polymers [105], micro/nano structures such as microtubes [106],
microporous materials [107], nanowires [108], or carbon absorbent [109] among many
others [110].

Focusing on preparation of chemicals with natural bases, DES has been used in the
synthesis of biodiesel. Habitually, biodiesel is prepared from animal fats or vegetable oils
or biomass such as yeasts, molds, algae, soybean, or pine trees [111]. The traditional pro-
cesses for preparing biodiesel present several limitations such as emulsification problems,
corrosion and energy, waste production, and the saponification of fatty acids, among others.
Investigations on the preparation of biodiesel using ionic liquids or DESs by means of enzy-
matic routes have revealed that less waste is produced and not such severe conditions are
needed [111]. Nevertheless, these new processes are still challenging, and some difficulties
must still be overcome (the compatibility with non-aqueous solvents, for instance).

On the other hand, DESs have been widely used for biotransformations such as
(trans)esterifications, polymerization of lactone, aminolysis, or epoxidation involving
lipase-catalyzed processes such as in [112] or epoxide hydrolase reactions [113].

Regarding the synthesis of natural products with biological and pharmaceutical
applications, DESs have been useful in the preparation of quinazolinones (marketed as
drugs due to their anticonvulsant, hypotensive, sedative, antidepressant, anti-inflammatory,
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and anti-allergy properties) mediated cyclization strategy. Results indicated that the
new process was cheaper, since the starting material, anthranilamide, is low-priced with
respect to the initial raw material and greener, in good to excellent yields [114]. The same
strategy was used to synthesize another type of alkaloid, a penipanoid type, with successful
results [115].

Another important feature in the use of DESs for the synthesis of natural products
is the facility of reuse and the decrease in the waste produced. For example, Annes et al.
synthesized 2H-chromene (structural motif in natural products with important biological
activity) via DESs in moderate and good yields, with the advantage of being able to recycle
the used DES at least five times [116].

Finally, another popular strategy is the use of DES as biocompatible building blocks
as a reactant, medium, and/or catalyst in the design of green novel synthetic protocols.
The reaction of 4-chlorobenzaldehyde, malononitrile, and hydrazine hydrate was studied
under two different reaction protocols (one-pot stepwise pattern and adding reactants
simultaneously) in the presence of various deep eutectic solvents, without using any
extra catalyst. Once again, the DES was reused and recycled four times with little loss of
reactivity [117].

4. DES in Extraction Processes of Bioactive Products

DES, but more specifically, NADES based on natural compounds, have been selected
as optimal solvents for extraction processes because of their properties [10,16,118]. NADES
have superior solubilizing ability for natural products and are usually nonvolatile [16]. For
example, Dai et al. (2014) found that NADESs have been able to enhance the stability of
the extracted phenolic compounds [119]. The biocompatibility of NADES with biomateri-
als has even generated interest in biotechnological industries since they are also suitable
solvents for the extraction of natural bioactive compounds from different organisms with
higher efficacy compared to the conventional ones, as shown in different previous re-
views [12,67]. Moreover, DES have been successfully used for the extraction of proteins
very efficiently [120,121]. For example, NADES are more useful as dissolving media in
biological assays in substitution of DMSO [16].

In relation to health, we are going to focus our attention on some studies on the
extraction of bioactive compounds from medicinal plants, although DESs have been widely
used for the extraction of other kind of compounds, with different ranges of hydrophilicity.
This is because DES and NADES can include different combinations of compounds, and
molar ratios of each component can be modified, allowing for a wide range of tailored
designs, apart from the development of innovative extraction techniques [16,122,123]. The
most common solvents include choline chloride as a hydrogen bond acceptor [123]. It
has been demonstrated that a higher efficiency can be obtained using them instead of
conventional solvents. Most bioactive compounds extracted with them include flavonoids,
phenolic acids, and anthocyanins [123]. These kinds of extractions involve plants such as
Chamaecyparis obtusa [124], Larrea cuneifolia [125], Cinnamomum camphora [126], or Scutellaria
baicalensis [127], among others.

Nahkle et al. published a review of the microextraction techniques such as liquid-
phase microextraction; hollow-fiber liquid-phase microextraction; dispersive liquid–liquid
microextraction methods; deep eutectic solvent based on an aqueous two-phase system;
ultrasound; microwave extraction; vortex extraction; heating and stirring or solid-phase
extraction. They presented the advantages and disadvantages of each extraction method
and showed how several properties (melting point, density, viscosity, surface tension, pH,
solubility, or polarity) could directly affect the extraction efficiency [24].

Socas-Rodríguez et al. presented an important summary where they showed some
studies that have used DESs as the extraction solvent. They collected information regarding
the used sample, extracted bioactive compounds from plants, fruits or vegetables, DES
(molar ratio and water content), extraction method, and, finally, analytical technique [128].
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The food and pharmaceutical industry have also explored the application opportu-
nities of DES due to the potential use of extracts as food additives, mainly, or even as
candidate pharmaceutical agents because of their antimicrobial and antioxidant activ-
ity [129,130]. Therefore, extractions include the use of DESs with by-products of fruits such
as grape skin or grape pomace or from onion seed and olive oil, tomato, or pear industries,
among others [129,131,132]. This can be a way to revalorize agro-food industry waste
or by-products. There is an additional application of NADES to increase food safety as
reviewed by Misan et al. (2019) or Chen (2019) in an attempt to remove harmful toxins
from food ingredients [130,133].

A recent review carried out by Redha showed a very good summary of several studies
where some phenolic compounds were extracted from natural sources such as Morus alba,
Olea europaea, Junglas regia, Lycium barbarum, Citrus aurantium, Citrus paradise, Lonicera
japonica Thunb, Camellia sinensins, or Citrus sinensis, among others. In this manuscript, they
showed the DES or NADES used (providing information about HBA and HBD and their
molar ratios), the extraction method (detailing the temperature, times, frequencies, etc.),
and the obtained yield in each method [134].

Moreover, bioextracts could even be used for dermal formulations as an antifungal
agent in a pharmaceutical application [135].

Very recently, DESs have also been tested as a capillary coating for in-tube solid-phase
microextraction for the bioanalysis of different kinds of biological samples [136].

The biological activity of DES/extract systems on cells have also been demonstrated.
The individual components of NADES such as malic acid, citric acid, proline, and betaine
possess antioxidative activity [137–139].

Grillo et al. studied the residues of blueberry processing used as a source of antho-
cyanins, which are valuable metabolites that possess a wide range of antiproliferative
activity. In this study, choline chloride:lactic acid (ChCl:LA) was selected as the most
suitable NADES based on extraction efficiency, cost, viscosity, and toxicity. This biological
activity was tested in the HeLa cell line and compared to human skin cells (HaCaT). This
antiproliferative effect observed with these extraction technologies using green solvents
could be interesting for the food industry [140].

Moreover, Guo et al. showed that the essential oil obtained by deep eutectic solvent-
homogenate based microwave-assisted hydrodistillation (DES-HMAHD) presented higher
antioxidant activity, but lower antifungal activity, and these properties were related to its
chemical composition [141].

5. Other Interesting Applications

It is also remarkable that DES can be used in many other applications of a very
different nature, which shows the great versatility of this type of mixture. For instance,
some molecular analytical methods are based on the use of biological samples that have
been previously preserved. DESs have been used successfully for the stabilization of
different kinds of samples prior to their analysis without interfering with the methods [142].
NADES can also improve the analytical method for the analysis of different drugs (aspirin,
atorvastatin, metformin, metoprolol), as shown recently by Ramezani et al. (2020) [143].

Additionally, some authors have demonstrated the usefulness of DESs as antibacterial
activity for the improvement of different candidate materials for medical purposes [144].
Gronlien et al. (2020) described the potential use of NADES with collagen in a practical
application combining wound healing by collagen peptides and the antibacterial properties
of the NADES [57].

More recently, even NADESs have been prepared to be used as nano-carriers for the
encapsulation of anticancer drugs to prevent and treat breast cancer [145]. In addition,
DESs can act as therapeutic agents by themselves. Hayyan et al. (2015) showed that
different DESs have been toxic to some cancer cell lines such as human prostate cancer
cell line (PC3), human malignant melanoma cell line (A375), human liver hepatocellular
cell line (HepG2) and human colon adenocarcinoma cell line (HT29), human breast cancer
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cell line (MCF-7), human oral keratinocyte cell line (OKF6) cells, and carcinoma-derived
human oral keratinocyte cells (H413). Besides, toxicity in normal cells was lower than the
cancerous ones [146]. Although certain types of DESs have been used as effective drug
deliverers or even have medical or pharmaceutical activities, it is recognized that further
investigation is needed prior to clinical use [41].

Metals and metal salts present high solubilities and electrical conductivities in DESs,
so they are good candidates for the extraction/recycling of metals in solution. In addi-
tion, DESs can be used in industrial separation processes [147]. The study carried out by
Oliveira et al. showed that the ChCl:levulinic acid DES had the highest distribution coeffi-
cient for separating ethanol from heptane [148]. The application of DES as media for the
extractive desulfurization of fuels (e.g., SO2 sequestration) is also growing in importance.
In this area, DESs have also demonstrated some interesting properties in improvements in
carbon dioxide (CO2) capture [138].

On the other hand, DESs have been used in genomics, incorporating them in the study
of genome and the nucleic acids (DNA/RNA) of organisms. DNA in DES dissolution
showed novel behaviors of this nucleic acid [149].

6. Conclusions

DESs are tremendously versatile, being used for an important number of applications
of very different natures. The main reason that explains this usefulness is the great solvation
capacity that these mixtures show against different types of substances. This may be due
to the supramolecular structure formed, where solutes can be dissolved inside the holes
of this matrix (hole or liquid crystal theory) [17] and that the hydrophilic–hydrophilic
interactions between solutes and DES components that make the solute form part of the
DES matrix (binding theory) [150].

This solubility boosting makes DESs a potential answer for the well-known challenge
of developing a formulation of poorly soluble API, which pharmaceutical science has been
addressing for a long time. Furthermore, the possibility of including the API into the DES
structure (THEDES) is another direction of research. With this regard, multidisciplinary
studies (chemical and pharmaceutical) are needed since a lack of rigorous studies during the
formulation processes (in vivo toxicity, pharmacokinetics studies, etc.) has been detected.

When DESs are used in the extraction and synthesis processes of natural compounds,
the solubility and biocompatibility of building blocks are not unique reasons that make
these mixtures so special: their reuse, recyclability, and benign environmental properties
are also points in favor of eutectic mixtures. Therefore, it is expected that research into
this field related to the obtention of high added value biological substances via DESs will
continue to increase.
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