
Received: 17 July 2021 Revised: 5 August 2022 Accepted: 19 October 2022

DOI: 10.1002/spe.3166

R E S E A R C H A R T I C L E

On the influence of architectural languages on
requirements traceability

Manuel Ballarín1 Lorena Arcega1 Vicente Pelechano2 Carlos Cetina1

1SVIT Research Group, Universidad San
Jorge, Zaragoza, Spain
2Centro de Investigación en Métodos de
Producción de Software (ProS), Universitat
Politécnica de Valéncia, Valencia, Spain

Correspondence
Manuel Ballarín, SVIT Research Group,
Universidad San Jorge, Zaragoza, Spain.
Email: mballarin@usj.es

Funding information
Secretaría de Estado de Investigación,
Desarrollo e Innovación, Grant/Award
Number: RTI2018-096411-B-I00

Abstract
Today, a considerable number of Architectural Languages (ALs) have been proposed
for specifying and analyzing the architecture of software systems. Despite the pop-
ularity of different ALs, how ALs influence software system maintainability has
not received much attention. One of the most important tasks in software main-
tenance is requirements traceability. Requirements traceability establishes links
between requirements and other software artifacts, facilitating system maintenance.
In this paper, we analyze the influence of ALs on requirements traceability. Taking
into account the ALs used by the industry, we analyze how ALs influence trace-
ability among requirements and architecture models. We conducted an evaluation
with our industrial partner CAF. The results show significant differences in AL
performance. We also analyze the results in terms of AL concepts, requirements
model elements, and AL type in order to understand the performance differences.
General-Purpose/Research Languages achieve the best results for all of the perfor-
mance indicators, providing a mean precision value of 0.51, a recall value of 0.38, a
combined F-measure of 0.40, and an Matthews Correlation Coefficient value of 0.33.
Those ALs that influence engineers to use more generic and domain-independent
terms to specify their architectures obtain the best results during requirements
traceability. Our results have the potential to help AL designers to improve their lan-
guages and also to help practitioners make a more informed decision about whether
or not a given AL meets their traceability needs.

K E Y W O R D S

architectural languages, architecture description language, requirement traceability, software
maintenance

1 INTRODUCTION

An Architectural Language (AL)* is a way to describe software systems.1 ALs provide practitioners with a set of rules
and common practices that help promote mutual communication, the embodiment of early design decisions, and the
creation of a transferable abstraction of a system. Components and connectors are the main elements of ALs, they
include rules and guidelines for well-formed architectures. AL’s suitability varies for modeling particular kinds of systems

*Hereafter, we use the term architectural language, or AL, to refer to any form of expression used for architecture description. We use the term AL for
the sake of clarity since, in the last few decades, several different definitions of the Architecture Description Language term have been proposed .

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. Software: Practice and Experience published by John Wiley & Sons Ltd.

704 wileyonlinelibrary.com/journal/spe Softw: Pract Exper. 2023;53:704–728.

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-2464-8894
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/SPE
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspe.3166&domain=pdf&date_stamp=2022-11-27

BALLARÍN et al. 705

(e.g., highly concurrent systems) or particular aspects of a given system (e.g., its static properties).2 Furthermore, the set
of aspects that are important enough to model varies from domain to domain.3

A major driver for AL selection is system-specific: software development teams or individual software engineers select
the AL that best fits the system to be realized, the domain of the system, or the specific project needs. Furthermore,
other factors influence the selection of the AL for specifying a software system, such as the existence of a commu-
nity that provides AL-related support, the skills and competences of current architects/developers, and tool support
and costs.4

In industrial scenarios, the usage of several ALs to specify different software systems is common. As observed in Ref-
erence 5 and confirmed in Reference 4, one of the reasons for the accumulation of so many ALs is the need to satisfy
different stakeholders’ concerns: “A language has to adequately capture design decisions judged fundamental by the sys-
tem’s stakeholders.” Nevertheless, despite the popularity of different ALs, the question of how the usage of ALs influences
software system maintainability has not yet received much attention.

One of the most important performed activities during the software system maintenance phase is requirements trace-
ability.6 Requirements traceability is concerned with the ability to relate requirements with other software artifacts (e.g.,
architecture models, source code) and establish the links between them during software development. Requirements
traceability has been a subject of investigation for many years within the software engineering community.7,8 Actively
supporting traceability in a software development project can help to ensure the qualities of the software, such as main-
tainability. Being able to identify the links among requirements and architecture models is very critical in order to verify
and trace nonreliable parts9 and to decrease the expected defect rate in development software.10 These traces can help
software engineers better understand the system during software maintenance.

In this work, we analyze the influence of ALs on requirements traceability. Taking into account a diverse set of the
ALs used by industry,4 we analyze how the use of these ALs influences traceability among requirements and architecture
models. To do this, we rely on a Requirements Traceability to Architectural Language (RTAL) approach that is based on
Latent Semantic Indexing (LSI),11 which is the technique that has shown the best results for requirements traceability.12,13

We evaluate the RTAL approach in a real-world industrial case study in the railway domain with our industrial partner
CAF, a worldwide leader in railway manufacturing. CAF makes use of different ALs in order to describe software archi-
tecture for train control and management. We compared the effectiveness of RTAL for each of the ALs using the standard
measurements accepted by the software engineering community: precision, recall, F-Measure, and Matthews Correla-
tion Coefficient (MCC).14,15 Finally, we perform a statistical analysis of the results to provide quantitative evidence of the
impact of the use of different ALs and to show that this impact is significant.

The results show a significant difference in AL performance. Y_DON is the AL that achieves the best results during
requirements traceability, while EAST-ADL is the AL that achieves the worst results. We analyzed the results to under-
stand what the best-performing ALs bring to the table in order to achieve the best results. We analyzed the results in terms
of AL concepts, requirements model elements, and AL type. To do this, we consider the classification presented by Taylor
et al.,16 which distinguishes four AL categories based on the engineers’ concerns and purposes. These categories are (1)
General-Purpose/Research Languages (languages proposed to ease and improve the quality of software architectures);
(2) Early Architecture Description Languages (languages proposed to provide interoperability, heterogeneity, and support
composition and reusability); (3) Domain- and Style-specific Languages (languages proposed to support a particular set
of tasks, as they are performed in a specific domain); and (4) Extensible architecture Description Languages (languages
proposed to address currently languages deficiencies by providing a rich, extensible and flexible syntax for describing com-
ponent interface types and the use of patterns and meta-information). Our analysis shows that General-Purpose/Research
Languages (in this study: UML, Y_DON, SDL, and ARCHIMATE) achieved the best results for all of the performance
indicators, providing a mean precision value of 0.51, a recall value of 0.38, a combined F-measure of 0.40, and an MCC
value of 0.33. Those ALs that influence engineers to use more generic and domain-independent terms to specify their
architectures obtained the best results during requirements traceability.

To the best of our knowledge, this paper presents the first investigation comparing ALs regarding their requirements
traceability performance. Our paper contributes to understanding the influence of ALs on requirements traceability
performance. Specifically, we claim that:

• There are significant performance differences among the widespread ALs. This is relevant for the software engineering
community because requirement traceability is an essential task for software maintenance and evolution. Our results
can help practitioners to choose the AL that best fits their needs in terms of requirement traceability.

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

706 BALLARÍN et al.

• Our analysis of the results helps to understand the source of the performance differences among ALs. This has the
potential to help AL designers to improve their ALs with regard to requirement traceability.

The remainder of the paper is structured as follows. Section 2 provides the background on ALs and requirements
traceability in our industrial partner. Section 3 presents the RTAL approach in detail. Section 4 presents the evaluation.
Section 5 provides insight into the discussion of the results. Section 6 presents the threats to validity. Section 7 presents
the related work. Section 8 concludes the paper.

2 BACKGROUND

Many ALs can be found today. ALs must appropriately capture the design decisions that are considered to be essential by
the system’s stakeholders. An extensive review of the use of ALs is presented in Reference 4. The goal of its authors is to
better understand the perceived strengths, limitations, and needs of practitioners regarding the use of ALs for software
architecture modeling in the industry.

To analyze the influence of ALs during requirements traceability, we performed a study on the ALs used by
previous researchers. First, we selected the ALs used by industry from a previous survey that analyzes differ-
ent ALs.4 The ALs are listed in Table 1, these ALs were most commonly used by 48 engineers from 40 dif-
ferent IT companies. Initially, we examined the 23 ALs that are considered to be the most widely used in the
industry (as is stated in Reference 4). However, we had to discard some of them for different reasons: some of
them were not possible to find (even by sending emails to the authors of the language), others do not have tool
support, and others did not have follow-up and therefore are currently outdated. Finally, we got a list with 11
ALs: AADL,37 Acme,38 ARCHIMATE,39 EAST-ADL,40 MIND,27 Modelica,28 PCM,30 SDL,41 UML,35 xADL,42 and
Y_DON.43

Table 1 shows a list of the ALs considered for this study (highlighted in grey). This list includes the tool used, a link
for more information, and the popularity of each AL. The popularity of an AL is based on how many engineers from the
total of 48 engineers interviewed used that AL (see the study conducted by Malavolta et al.4).

The running example and the evaluation in this paper are performed using the products of our industrial partner,
CAF. CAF is a worldwide provider of railway solutions. Their trains can be seen all over the world and in different forms
(regular trains, subway, light rail, monorail, etc.). A train unit is furnished with multiple pieces of equipment through-
out its vehicles and cabins. These pieces of equipment are often designed and manufactured by different providers, and
their aim is to carry out specific tasks for the train. Some examples of these devices are the traction equipment, the com-
pressors that feed the brakes, the pantograph that harvests power from the overhead wires, or the circuit breaker that
isolates or connects the electrical circuits of the train. The control software of the train unit is in charge of making all the
equipment cooperate to achieve the train functionality while guaranteeing compliance with the specific regulations of
each country.

Figure 1 depicts a simple example of three different architecture models that realize the same requirement and are
specified through different ALs. For this example, we have chosen the three top-ranked ALs used by industry:4 the top
architecture model is specified through UML, the center architecture model is specified through ARCHIMATE, and the
bottom architecture model is specified through AADL. UML model contains nine model elements, including five classes
and four associations (connectors); ARCHIMATE model contains 13 model elements, including five application compo-
nents, four application interfaces, and four used-by connectors; and AADL model contains 17 model elements including
five process elements, eight ports, and four connectors. Some of the architecture languages allow the definition of the
requirements to be closer to the domain. We consider these languages more abstract because they can be considered
closer to reality. For example, the elements that appear in the ARCHIMATE language allow requirements to be defined
in a way that is close to the domain, unlike the UML. Therefore, ARCHIMATE is more abstract than UML. ARCHI-
MATE uses application components, application interfaces, and used-by connectors, while UML only uses classes and
associations.

The requirement (Figure 1, top) describes the behavior of high-voltage auxiliary coverage in the railway domain of
the industrial partner. In natural language, this requirement is described as follows: The PLC will enable the auxiliary
compressor if its associated auxiliary converter is generating alternating current (AC), while the pantograph is raised, being
the circuit breaker closed.

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

BALLARÍN et al. 707

T A B L E 1 List of the architectural languages considered for this study
Architecture
language Tool Learn more at Popularity

AADL OSATE 2 Open Source AADL
Tool Environment

The Open Source AADL Tool Environment (OSATE)17 7/48

ABACUS ABACUS 7 (not tool support) https://www.avolutionsoftware.com/abacus/ 2/48

Acme AcmeStudio AcmeStudio: Supporting style-centered architecture
development18

2/48

ArchiMate Archi – Open Source
ArchiMate Modelling

Archi-Open Source Archimate Modelling19 6/48

CCL CCLi (not tool support) Snapshot of CCL: A language for predictable assembly20 2/48

Darwin Darwin Tool (Not available) Specifying distributed software architectures21 2/48

EAST-ADL MetaEdit+ 5.5 EAST-ADL: An architecture description language for
automotive software-intensive systems22

3/48

HOOD Not found Defining software architectures using the Hierarchical
Object-Oriented Design method (HOOD)23

2/48

IAF Not found The integrated architecture framework explained: why,
what, how24

2/48

KISS Not found Knowledge industry survival strategy (KISS)25 2/48

Koala Not found The Koala Component Model for Consumer Electronics
Software26

2/48

MIND MindEd 0.2.1 Eclipse Plugin The MIND project27 2/48

Modelica OPENMODELICA Modelica—A unified object-oriented language for system
modeling and simulation28

2/48

OLAN Not found The olan architecture definition language29 2/48

PCM Palladio-Bench The Palladio Component Model30 2/48

RAPIDE Not found Specification and analysis of system architecture using
Rapide31

4/48

SAMM Not found Q-ImPrESS project deliverable D2. 1: service
architecture metamodel (SAMM)32

2/48

SDL PragmaDev Studio Model-based testing: an approach with SDL/RTDS and
DIVERSITY33

2/48

SDO Not found https://www.osoa.org/display/Main/SDO+Resources 2/48

SLX Wolverine Software
Corporation (Not available)

Inside discrete-event simulation software: how it works
and why it matters34

2/48

UML UML Designer 9.0 The unified modeling language user guide35 38/48

xADL ArchStudio 4 Archstudio 4: An architecture-based meta-modeling
environment36

2/48

Y_DON Visual Paradigm’s DFD tool https://www.visual-paradigm.com/ 2/48

3 REQUIREMENTS TRACEABILITY TO AL

By targeting a real-world industrial case study, the goal of the presented work is to analyze the influence of ALs
in one of the most commonly performed activities during the software system maintenance phase: requirements
traceability.

In this work, we use an RTAL approach that is based on Information Retrieval (IR) techniques. IR techniques index
the documents in a document space as well as the queries by extracting information about the occurrences of terms

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.avolutionsoftware.com/abacus/
https://www.osoa.org/display/Main/SDO%2BResources
https://www.visual-paradigm.com/

708 BALLARÍN et al.

F I G U R E 1 Example of a requirement specified through the top-ranked architectural languages in industry

within them. This information is used to define similarity measures between queries and documents. In the case of
RTAL, this similarity measure is used to identify that a traceability link might exist between two artifacts, one of which
is used as a query.44 Specifically, the RTAL approach used in this work relies on LSI,11 which is the IR technique that
achieves the best RTAL results12,13 and that has been successfully applied to different kinds of software artifacts in different
contexts.15,44,45

LSI is an automatic mathematical/statistical technique that analyzes relationships between queries and documents.
Specifically, given a certain requirement-model pair as input for LSI, the RTAL approach uses the outcome produced from

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

BALLARÍN et al. 709

F I G U R E 2 Overview of requirements traceability to architectural language

the LSI to build a model fragment that serves as a candidate for realizing the requirement. The LSI technique is based on
textual similarity in order to determine which model elements are closer to the provided requirement. In this way, the
construction indexing of the artifacts (requirement and architecture model) is preceded by a text homogenization phase.
During this phase, different Natural Language Processing (NLP) techniques are applied.

Figure 2 presents an overview of the RTAL approach. The left part shows the inputs for the approach: an architecture
model specified in an AL and a requirement in natural language. The center shows a simplified representation of the
main steps. The rounded rectangular boxes represent the different steps of the RTAL approach. The “Natural Language
Processing” step homogenizes the natural language from the model and the requirement. Finally, the “Textual Similarity
among Model Elements and the Requirement” step recover the traceability links between requirements and architecture
models based on textual similarity. As output, the RTAL approach provides a model fragment relevant to the requirement.
The following sections describe the RTAL approach in detail.

3.1 Natural language processing

First, the RTAL approach deals with homogenizing the natural language from the requirement and the natural language
from the elements that form the architecture model. Well-known NLP techniques are applied: the Parts-of-Speech tagging
technique,7 and Lemmatizing techniques.23 Thanks to these techniques, the language of both the requirements and the
ALs is unified, avoiding verb tenses, noun plurals, and strange word forms that negatively interfere with the RTAL process.

The inclusion of domain experts, particularly software engineers, in traceability processes is a widely discussed topic
within the SE community. It is often regarded as beneficial to have some sort of domain knowledge embedded in auto-
mated traceability systems, particularly in areas that are related to software reuse and software variability. Some of the
techniques derived from humans interacting with traceability processes are Domain Term Extraction and Stopword
Removal.

In order to carry out these techniques, RTAL Engineers provide two separate lists of terms: a list of terms (both
single-word terms and multiple-word terms) that belong to the domain and that must always be kept for analysis and a
list of irrelevant words that can appear throughout the entirety of the specification documents and that have no value
whatsoever for the analysis. Both kinds of terms can be automatically filtered in or out of the final query, depending on
the needs of the domain experts. For example, a list of relevant domain terms contains words such as Pantograph, Multi-
plexer, Left door, and/or CCTV system, among others. By contrast, a list of irrelevant words contains words such as Trigger,
State, Time, and/or Status; among other words.

3.2 Textual similarity among model elements and the requirement

After homogenizing the natural language from the requirement and the natural language from the elements that con-
form the architecture model, LSI recovers the traceability links between requirements and architecture models. LSI is

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

710 BALLARÍN et al.

an automatic mathematical/statistical technique that analyzes relationships between queries and documents (bodies of
text). It constructs vector representations of both a user query and a corpus of text documents by encoding them as a
term-by-document co-occurrence matrix and analyzes the relationships between those vectors to get a similarity ranking
between the query and the documents (see Figure 3).

Figure 3 shows an example of a term-by-document co-occurrence matrix, with values associated with our case study,
the vectors, and the resulting ranking. An overview of the elements of the matrix is provided below.

• Each row in the matrix (term) stands for each of the words that compose the processed requirement and natural lan-
guage representation of the input architecture model. Figure 3 shows a set of representative words in the domain, such
as “Pantograph,” as the terms of each row.

• Each column in the matrix (document) stands for one of the model elements extracted from the input architecture
model. Figure 3 shows identifiers in the columns such as “ME1” or “ME2,” which represent the documents of those
specific architecture model elements.

• The final column stands for the query, which is one requirement.
• Each cell in the matrix contains the frequency with which the term of its row appears in the document denoted by its

column. For instance, in Figure 3, the term “Pantograph” appears twice in the “MEN” document and once in the query.

Vector representations of the documents and the query columns are obtained by normalizing and compositing the
term-by-document co-occurrence matrix using Singular Value Decomposition (SVD).11,46 SVD is a form of factor analysis,
or more properly, the mathematical generalization of which factor analysis is a special case. In SVD, a rectangular matrix
is decomposed into the product of three other matrices. One component matrix describes the original row entities as
vectors of derived orthogonal factor values, another describes the original column entities in the same way, and the third
is a diagonal matrix that contains scaling values such that when the three components are matrix-multiplied, the original
matrix is reconstructed.

Figure 3 presents a three-dimensional graph of the SVD. The graph shows the vectorial representations of some of
the matrix columns. For legibility reasons, only a small set of columns is presented. To measure the degree of similarity
between vectors, the RTAL approach calculates the cosine between the query vector and the document vectors. Cosine
values that are closer to 1 denote a higher degree of similarity, and cosine values that are closer to −1 denote a lower
degree of similarity. Similarity increases as vectors point in the same general direction (as more terms are shared between
documents). Through this measurement, the model elements are ordered according to their degree of similarity to the
requirement.

The relevancy ranking (shown in Figure 3) is produced according to the calculated degrees of similarity. In
this example, LSI retrieves “ME2” and “MEN” in the first and second position of the relevancy ranking since the
query-documents cosines are “0.93” and “0.85,” implying a high degree of similarity between the model elements and
the requirement. In contrast, the “M1” Model Element is returned in a lower position of the ranking because its
query-document cosine is “−0.87,” implying a low degree of similarity.

From the ranking of all the model elements, those that have a similarity measure greater than x must be taken into
account. The heuristic that the RTAL approaches use, and that is used in other works15,47 is x= 0.7. This value corresponds
to a 45◦ angle between the corresponding vectors. Nevertheless, the selection of this threshold is an issue that is still under
study, and its proper parametrization has not yet been tackled in architecture models.

F I G U R E 3 Requirements traceability to architecture languages through latent semantic indexing example

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

BALLARÍN et al. 711

Following this principle, the model elements with a similarity measure equal or superior to x = 0.7 are taken to form
a model fragment, which is a candidate for realizing the requirement. Through the example provided in Figure 3, ME2
and MEN are the model elements that are part of the model fragment obtained for the requirement, since their cosine
values are superior to the threshold. The model elements below the threshold, except ME1, are not shown in the rank-
ing for reasons of space and understandability. The model fragment generated in this manner is the final output of the
RTAL approach. The right part of Figure 3 shows an example of a model fragment specified through AADL. The model
fragment reference the complete AADL model that is shown in Figure 1. Words, such as “Pantograph” or “HighVolt-
age,” can be seen in the visual representation, however, some others are part of the properties and do not have a visual
representation.

4 EVALUATION

In this section, we aim to clearly establish the scope of our work and to determine the key research questions that we must
tackle and bear in mind when designing our experiment. The following research questions (RQ) arise from the described
problem.

RQ1: How do the different ALs influence traceability among requirements and architecture models?
RQ2: Is the difference in performance between ALs significant?
RQ3: How much is the quality of the solution influenced by each AL?
Answering RQ1 allows us to compare the performance results (in terms of recall, precision, F-measure, and MCC) of

each of the ALs in requirements traceability. Answering RQ2 allows us to provide formal and quantitative evidence (using
the Quade test and the Holm’s post hoc analysis) to determine whether or not the difference in performance is significant.
Answering RQ3 allows us to assess (through effect size measure, Vargha and Delaney’s ̂A12) how much the quality of the
solutions is influenced by each AL.

In the following subsections, we introduce the experimental setup and the case study used, and we provide details of
the implementation of our evaluation. Finally, we present the results and the statistical analysis of our evaluation.

4.1 Experiment setup

Figure 4 shows an overview of the process that was followed to evaluate the approach. The left part shows the arti-
facts, which are provided by the industrial partner: requirements, architecture models, and approved traceability between
requirements and architecture models. The set of requirements is specified through each of the ALs selected for this study
(a set of those most relevant used by industry4).

A dedicated team of industrial experienced specialists was made available to us by the industrial partner to perform the
modeling of different requirements using different ALs. The team consisted of five system architects: one is experienced in
AADL, EAST-ADL, and Modelica, two are experienced in MIND, PCM, ACME, and xADL, one is experienced in Y_DON

F I G U R E 4 Experimental setup

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

712 BALLARÍN et al.

and ARCHIMATE, and one is experienced in SDL and UML. They were in charge of realizing a set of requirements using
the 11 different ALs presented in this paper. After realizing the different models, the five system architects reviewed all
of the models.

As a result, the documentation includes 11 different architecture models that specify the same set of requirements
but using different ALs. As shown in Figure 4, the requirements and architecture model conform the input of the RTAL
approach, and approved traceability plays the role of the oracle.

The RTAL approach takes those inputs and obtains a model fragment for each requirement. The generated model
fragments are compared with the oracle. Once the comparisons are performed, a confusion matrix is calculated. A confu-
sion matrix is a table that is often used to describe the performance of a classification model (in this case, RTAL) on a set
of test data (the resulting model fragments) for which the true values are known (the oracle). In our case, each solution
output by the RTAL approach is a model fragment that is composed of a subset of the model elements that are part of the
architecture model. Since the granularity is at the level of model elements, the presence or absence of each model element
is considered to be a classification. The confusion matrix will distinguish between two values (TRUE or presence and
FALSE or absence). We obtain a confusion matrix for each requirement predicted by comparing the actual model frag-
ment that corresponds to the requirement (obtained from the oracle and considered the ground truth) and the predicted
model fragment for the requirement. The confusion matrix arranges the results of the comparison into four categories:

• True Positive (TP): an element that is predicted as present (in the solution) and is present in the real scenario (the
oracle).

• False Positive (FP): an element that is predicted as present (in the solution) but is not present in the real scenario
(the oracle).

• True Negative (TN): an element that is predicted as not present (in the solution) and is not present in the real scenario
(the oracle).

• False Negative (FN): an element that is predicted as not present (in the solution) but is present in the real scenario
(the oracle).

Then, some performance measurements are derived from the values in the confusion matrix. Specifically, a report
that includes four performance measurements (Precision, Recall, F-Measure, and MCC) is created for the case study.

Precision measures the number of elements from the solution that are correct according to the ground truth (the
oracle) and is defined as follows:

Precision = TP
TP+ FP

. (1)

Recall measures the number of elements of the solution that are retrieved by the proposed solution and is defined as
follows:

Recall = TP
TP+ FN

(2)

F-measure corresponds to the harmonic mean of precision and recall and is defined as follows:

F-Measure = 2 ∗ Precision * Recall
Precision + Recall

= 2 ∗ TP
2TP + FP + FN

. (3)

However, none of these previous measures correctly handle negative examples (TN). The MCC is a correlation coeffi-
cient between the observed and predicted binary classifications that takes into account all of the observed values (TP TN,
FP, FN) and is defined as follows:

MCC = TP ⋅ TN - FP ⋅ FN
√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

. (4)

Precision and recall values can range from 0 to 1. A precision value equal to 0 means that no single model element
from the solution is the oracle while a precision value equal to 1 means that all of the model elements from the solution are

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

BALLARÍN et al. 713

present in the oracle. A recall value equal to 0 means that no single model element from the realization of the requirement
obtained from the oracle is present in the model fragment of the solution while a recall value equal to 1 means that all of
the model elements from the oracle are present in the solution. A precision and recall values equal to 1 implies that both
the solution and the requirement from the oracle are the same. MCC values can range between −1 and 1. An MCC value
equal to −1 means that there is no correlation between the prediction and the solution, an MCC value equal to 1 means
that the prediction is perfect, and an MCC value equal to 0 means that the prediction is random.

4.2 Case study

For our evaluation, our industrial partner, CAF, provided us with natural language requirements and architecture models.
The data that support the findings of this study are openly available on the SVIT Research Group web at https://svit.usj.
es/al-tlr-data/.

The software of a train is specified through more than 500 natural language requirements, with an approximate aver-
age of 50 words per requirement. The architecture models are specified with an average of 330 total model elements. We
followed the experimental setup shown in Figure 4. For this case study, we used a subset of 16 requirements (randomly
selected). We executed an independent run for each of the 16 requirements for each of the 11 ALs considered for this
study, that is, 16 (requirements) × 11 (AL) = 176 independent runs.

4.3 Implementation details

This approach was implemented within different environments, each of which depends on a specific software architec-
ture. The IR techniques used to process the language were implemented using OpenNLP48 for the POSTagger. LSI was
implemented using the Efficient Java Matrix Library (EJML).49

In addition, in order to specify the requirements through different ALs, we used the following tools (also specified in
Table 1): OSATE 2.2.3 to specify AADL models, AcmeStudio to specify Acme models, Archi 4.0.3 to specify ArchiMate
models, MetaEdit+ 5.5 to specify EAST-ADL models, MindEd 0.2.1 Eclipse Plugin to specify MIND models, OpenModel-
ica to specify Modelica models, Palladio-Bench to specify PCM models, PragmaDev Studio to specify SDL models, UML
Designer 9.0 to specify UML models, ArchStudio 4 tool to specify xADL models, and Visual Paradigm’s DFD tool to specify
Y_DON models.

4.4 Results

This subsection presents the results obtained once the RTAL approach was executed for each of the ALs selected for this
study. Appendix A (Figures A1–A11) presents the charts with the precision and recall results for each requirement for
our real-world case study and the 11 ALs. A dot in the graph represents the average result of precision (x-axis) and recall
(y-axis) for each of the requirements in CAF.

RQ1 answer. In Table 2, we outline the results that are aggregated for each AL in our case study. We also show the
F-Measure and MCC performance indicators. Similarly, Figure 5 shows the box plots obtained from those results. The
AL that achieved the best results is Y_DON, attaining 1 in precision, 0.65 in recall, 0.78 in F-measure, and 0.75 in MCC.
The second-best result in precision was obtained by MIND, reaching 0.69; however, the recall value was very low, 0.04.
The third-best result in precision was obtained by ARCHIMATE, reaching 0.53, which also obtained the second-best
result in recall, 0.39. In contrast, both EAST-ADL and MODELICA obtained the worst results in all of the measurements.
EAST-ADL obtained 0.06 in precision, 0.02 in recall, 0.02 in F-measure, and −0.49 in MCC; MODELICA obtained 0.01
in precision, 0.01 in recall, 0.01 in F-Measure, and −0.26 in MCC.

4.5 Statistical analysis

In order to properly compare the results obtained in RTAL with the different ALs, we performed the statistical analysis
of the results following the criteria of Reference 50. We measured statistical significance and effect size. The statistical

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://svit.usj.es/al-tlr-data/
https://svit.usj.es/al-tlr-data/

714 BALLARÍN et al.

T A B L E 2 Mean values and SD for precision, recall, F-Measure, and Matthews correlation coefficient (MCC) for each architectural
language

Precision ± 𝝈 Recall ± 𝝈 F-measure ± 𝝈 MCC ± 𝝈

AADL models 0.13 ± 0.13 0.37 ± 0.32 0.19 ± 0.17 0.10 ± 0.21

ACME models 0.08 ± 0.05 0.21 ± 0.19 0.11 ± 0.08 0.00 ± 0.10

ARCHIMATE models 0.53 ± 0.25 0.39 ± 0.28 0.43 ± 0.27 0.28 ± 0.33

EAST-ADL models 0.06 ± 0.15 0.02 ± 0.05 0.02 ± 0.07 −0.49 ± 0.13

MIND models 0.69 ± 0.48 0.04 ± 0.05 0.08 ± 0.08 0.15 ± 0.12

MODELICA models 0.01 ± 0.02 0.01 ± 0.02 0.01 ± 0.02 −0.26 ± 0.05

PCM models 0.28 ± 0.24 0.42 ± 0.35 0.31 ± 0.26 0.24 ± 0.29

SDL models 0.38 ± 0.50 0.15 ± 0.24 0.20 ± 0.29 0.22 ± 0.31

UML models 0.15 ± 0.14 0.33 ± 0.25 0.19 ± 0.15 0.08 ± 0.18

xADL models 0.17 ± 0.15 0.15 ± 0.20 0.13 ± 0.14 −0.06 ± 0.16

Y_DON Models 1.00 ± 0.00 0.65 ± 0.13 0.78 ± 0.09 0.75 ± 0.10

significance allows us to provide formal and quantitative evidence that ALs have an impact on the metrics used for the
comparison. The effect size allows us to present that the differences in the results are significant in practice.

4.5.1 Statistical significance

A statistical test is run to assess whether there is enough empirical evidence to claim that there is a difference between
the approaches (e.g., approach A is better than approach B). First, we need to define two hypotheses: the null hypoth-
esis (H0) and the alternative hypothesis (H1). In contrast to the alternative hypothesis, the null hypothesis states that
there is no difference between the approaches. Then, the statistical test verifies whether the null hypothesis could be
rejected.

The rejection of the null hypothesis is performed taking into account the p-value provided by the statistical test. This
value can range between 0 and 1. Assuming that the null hypothesis is true, the closer the value is to 0, the lower the
probability of obtaining results at least as extreme as the observed ones. For the research community, a p-value below 0.05
is accepted to indicate that the null hypothesis can be considered false.50

To select the test to follow, we took into account the distribution and the nature of our data. Our data does not follow a
normal distribution in general. In addition, our data is extracted from a real environment. Since our data does not follow
a normal distribution, our analysis requires the use of nonparametric techniques. There are several tests for analyzing
this kind of data; however, the Quade test shows that it is more powerful than the others when working with real data,
that is, extracted from a real environment.51

RQ2 answer. The p-values obtained in the test are≪ 2.2 × 10−16 for precision and MCC, and 1.705 × 10−10 for recall;
the statistics values obtained are 13.962, 8.1814, and 15.314 for precision, recall, and MCC, respectively. Since the p-values
are smaller than 0.05, we can reject the null hypothesis. Consequently, we can state that there are differences among the
algorithms for the performance indicators of precision, recall, and MCC.

Next to the Quade test, we perform an additional post hoc analysis to test which algorithm gives the best performance.
With the Holm’s post hoc analysis, we compare each algorithm against all other alternatives to indicate whether exist
significant differences between the results of a specific pair of algorithms.

Table 3 shows the p-values of Holm’s post hoc analysis for the case study and the performance indicators for each pair
of algorithms. The majority of the p-values obtained by Y_DON are smaller than their corresponding significance thresh-
old value (0.05), indicating that the differences in performance between this AL and the rest of the ALs are significant.
However, when we compare AADL, ACME, SDL, UML, or xADL with the rest of the ALs, the majority of the values are
greater than the threshold. This indicates that the differences between those ALs could be due to mere chance and are
not significant.

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

BALLARÍN et al. 715

F I G U R E 5 Box plots of the Precision, Recall, F-Measure, and Matthews correlation coefficient values obtained by each of the
architectural languages

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

716 BALLARÍN et al.

T A B L E 3 Holm’s post hoc p-values and the ̂A12 statistics for each pair of algorithms

Holm’s Â12

Precision Recall MCC Precision Recall MCC

AADL versus ACME 1 1 1 0.58203 0.62695 0.62695

AADL versus ARCHIMATE 0.00574 1 1 0.08398 0.49609 0.31641

AADL versus EAST-ADL 0.36681 0.00162 0.00015 0.79687 0.87891 1

AADL versus MIND 0.08503 0.39920 1 0.28320 0.83203 0.36133

AADL versus MODELICA 0.18268 0.00613 0.01623 0.87109 0.87109 1

AADL versus PCM 1 1 1 0.33594 0.45898 0.35352

AADL versus SDL 1 0.62333 1 0.56641 0.71484 0.32227

AADL versus UML 1 1 1 0.42968 0.54102 0.52539

AADL versus xADL 1 1 1 0.41602 0.70508 0.73047

AADL versus Y_DON 0.98405 ≪ 2.2 × 10−16 1.8 × 10−05 0 0.26953 0

ACME versus ARCHIMATE 0.00057 0.81473 1 0.03516 0.30859 0.22852

ACME versus EAST-ADL 1 0.15266 0.00011 0.76563 0.84375 1

ACME versus MIND 0.01377 1 1 0.27344 0.77344 0.18359

ACME versus MODELICA 0.67573 0.38498 0.01322 0.81641 0.82813 1

ACME versus PCM 1 0.83358 1 0.27344 0.33008 0.25781

ACME versus SDL 1 1 1 0.54688 0.63477 0.33203

ACME versus UML 1 1 1 0.33398 0.36328 0.36914

ACME versus xADL 1 1 1 0.34375 0.63281 0.68555

ACME versus Y_DON 1.9 × 10−08 0.03101 2.5 × 10−05 0 0.04297 0

ARCHIMATE versus EAST-ADL 1.2 × 10−07 5.0 × 10−05 2.8 × 10−08 0.94531 0.96875 0.99219

ARCHIMATE versus MIND 1 0.03806 1 0.31250 0.94531 0.58984

ARCHIMATE versus MODELICA 2.7 × 10−08 0.00022 1.1 × 10−05 1 0.99219 0.93750

ARCHIMATE versus PCM 0.10538 1 1 0.77539 0.48438 0.54688

ARCHIMATE versus SDL 0.00739 0.06649 1 0.62500 0.79883 0.56445

ARCHIMATE versus UML 0.05621 1 1 0.90429 0.57813 0.69141

ARCHIMATE versus xADL 0.01377 0.62333 0.16410 0.86914 0.77344 0.82031

ARCHIMATE versus Y_DON 0.59196 1 0.02271 0 0.25195 0.06055

EAST-ADL versus MIND 7.2 × 10−06 1 4.9 × 10−08 0.17578 0.24804 0

EAST-ADL versus MODELICA 1 1 1 0.39844 0.39844 0.05664

EAST-ADL versus PCM 0.03129 5.4 × 10−05 2.6 × 10−08 0.19531 0.14453 0

EAST-ADL versus SDL 0.31385 1 7.0 × 10−08 0.35156 0.35156 0

EAST-ADL versus UML 0.06930 0.01916 6.6 × 10−06 0.22852 0.14844 0

EAST-ADL versus xADL 0.19533 0.22138 0.00681 0.22461 0.19531 0.00977

EAST-ADL versus Y_DON 6.4 × 10−13 1.2 × 10−07
≪ 2.2 × 10−16 0 0 0

MIND versus MODELICA 1.8 × 10−06 1 1.8 × 10−05 0.78516 0.69336 1

MIND versus PCM 0.70166 0.04030 1 0.72656 0.21289 0.44922

MIND versus SDL 0.10055 1 1 0.65625 0.52734 0.52734

MIND versus UML 0.42606 1 1 0.72656 0.21289 0.63672

(Continues)

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

BALLARÍN et al. 717

T A B L E 3 (Continued)

Holm’s Â12

Precision Recall MCC Precision Recall MCC

MIND versus xADL 0.15858 1 0.22062 0.72656 0.30859 0.82031

MIND versus Y_DON 0.08503 0.00038 0.01623 0.34375 0 0

MODELICA versus PCM 0.01237 0.00024 1.1 × 10−05 0.17188 0.17188 0

MODELICA versus SDL 0.15858 1 2.5 × 10−05 0.42969 0.42969 0

MODELICA versus UML 0.02836 0.05604 0.00117 0.17188 0.17188 0.00391

MODELICA versus xADL 0.10055 0.52070 0.26365 0.17188 0.17578 0.07227

MODELICA versus Y_DON 1.1 × 10−13 7.0 × 10−07 1.1 × 10−13 0 0 0

PCM versus SDL 1 0.07003 1 0.54688 0.73047 0.50391

PCM versus UML 1 1 1 0.63867 0.58789 0.66211

PCM versus xADL 1 0.63987 0.16231 0.61914 0.70898 0.83008

PCM versus Y_DON 3.2 × 10−05 1 0.02318 0 0.33789 0.01172

SDL versus UML 1 1 1 0.45313 0.28125 0.60938

SDL versus xADL 1 1 0.26100 0.45313 0.41797 0.76563

SDL versus Y_DON 5.2 × 10−07 0.00082 0.01322 0.18750 0.05078 0.05859

UML versus xADL 1 1 1 0.46484 0.70117 0.73828

UML versus Y_DON 1.0 × 10−05 0.22630 0.00040 0 0.11133 0

xADL versus Y_DON 1.3 × 10−06 0.01990 1.8 × 10−07 0 0.05078 0

4.5.2 Effect size

The effect size assesses if an algorithm is statistically better than another and the magnitude of the improvement. For a
nonparametric effect size measure, we use Vargha and Delaney’s ̂A12.52,53

̂A12 measures the probability that running one
algorithm yields higher values than running another algorithm. A value of 0.5 means that two algorithms are equivalent.

For example, we want to measure the effect size of an algorithm A against an algorithm B. An ̂A12 value equal to 0.7
means that the algorithm A would obtain better results in 70% of the runs. Similarly, an ̂A12 value equal to 0.3 means that
the algorithm B would obtain better results in 70% of the runs.

RQ3 answer. Table 3 shows the values of the effect size statistics. In general, the largest differences were obtained
between Y_DON and the rest of the ALs, where Y_DON achieves the best results every time. When comparing ARCHI-
MATE, MIND, and PCM with the rest of the ALs, the differences are not so large, but they obtain better results the majority
of times. However, when we compare EAST-ADL with the rest of the ALs, EAST-ADL gets worse results every time.

5 DISCUSSION

There is a substantial inherent gap between requirement descriptions and ALs, because the transformation from require-
ments to architecture models is not included in the model-driven architecture life cycle, which starts from an analysis
model (or design model) and ends with deployed code.54 The reason for this exclusion is perhaps that requirements are
always written with natural language texts, which are not a model formal enough to be understood by computers.55 As a
result, natural language requirements are not suitable for automated transformations.

Each AL is characterized by distinct conceptual architectural elements to satisfy different stakeholder concerns, giving
engineers different concepts in order to specify a software architecture: AADL (ComponentImpl, Connector, Block); Acme
(System, Component, Port); Archimate (Application collaboration, Business process, Infrastructure interface); EAST-ADL
(EventChain, ErrorBehavior, LifecycleStageKind); MIND (Class, Operation, Property); Modelica (class, equation, connect);

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

718 BALLARÍN et al.

PCM (Entity, Role, RepositoryComponent); SDL (SdlNamedElement, SdlFeature, SdlAgent); UML (Constraint, Actor,
Lifeline); xADL (Link, Point, Interface); and Y_DON (Process, Data Store, Entity).

If we classify each AL according to the concepts used in its specification, there is a great disparity among ALs.
For instance, ACME uses seven concepts to specify its architecture, Y_DON uses four concepts to specify its architec-
ture, and SDL uses 11 concepts to specify its architecture. In addition, different ALs use a high number of concepts
(more than 100 concepts) to specify their architectures. For example, UML uses around 110 concepts, AADL uses
more than 200 concepts, and EAST-ADL uses more than 400 concepts. We analyzed the results looking for correlations
between requirements traceability performance and the size of concepts in ALs specifications, but we did not find any
correlations.

The concepts of each AL specification influence the number of elements that an architecture model contains (see
Figure 6). However, the number of model elements does not offer any explanation for the results achieved. Taking into
account the same requirements for all ALs, some ALs like PCM or SDL use around five elements to model a specific
requirement, while other ALs such as MIND use more than 100 elements to model the same requirement. This is the
reason why we believe that MIND obtains good precision values (69% of the elements found belong to the requirement),
but low recall values (only 4% of the elements of the requirement are found). The approach has to find more than 100
elements in a model with more than 670 elements. In the case of Y_DON, which obtains the best precision value (100%),
the size of the requirements is around 19 elements on average. It also obtains good values for recall (69%). In this case, the
approach has to find 19 elements in models of about 60 elements. Nevertheless, the analysis of our results did not reveal
a correlation between the number of model elements and the requirements traceability results achieved. Neither the AL
concepts nor the requirement model elements explain the performance differences among ALs. However, we realize that
the ALs that allow the specification of the requirements closer to the domain due to the architectural elements used
obtain better results in precision and recall. This is the case of Y_DON, which we consider the most abstract language of
those studied because it allows defining the requirements in the closest way to the domain. On the opposite side, we find
MODELICA, which obtains the worst results because the final models of the requirements are very far from the domain,
it is the least abstract language.

ALs can be classified according to different criteria.16,56 One of the well-accepted AL classifications is those pre-
sented by Taylor et al.,16 which distinguishes four AL categories based on the engineers’ concerns and purposes.
The authors propose four categories: (1) General-Purpose/Research Languages (e.g., UML or Archimate); (2) Early
Architecture Description Languages (e.g., PCM); (3) Domain-and Style-specific Languages (e.g., AADL or Modelica);

F I G U R E 6 Number of architectural language model elements for each requirement

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

BALLARÍN et al. 719

and (4) Extensible architecture Description Languages (e.g., xADL or Acme). Note that these categories are not mutually
exclusive. For example, this paper classifies UML and AADL as General-Purpose/Research Languages. However, both
ALs can be considered Extensible Architecture Description Languages also. UML uses extension mechanisms through
profiles and stereotypes and AADL uses extension mechanisms through annex libraries.57 Even though different ALs
can be classified in different categories, in that case, the existing works in the field classify both UML and AADL as
General-Purpose/Research Languages.16,57-60 For this reason, we followed the same classification,16 classifying both UML
and AADL ALs as General-Purpose/Research Languages.

Taking this classification into account, our analysis shows that General-Purpose/Research Languages achieve the
best results during requirements traceability followed by Extensible Architecture Description Languages. In contrast,
both Early Architecture Description Languages and Domain-and Style-specific Languages achieve worse results dur-
ing requirements traceability. The architecture models specified using those ALs classified as General-Purpose/Research
Languages and those ALs classified as Extensible architecture Description Languages contain more generic and
domain-independent terms. In contrast, the architecture models specified using those ALs classified as Early Architec-
ture Description Languages and those ALs classified as Domain-and style-specific Languages contain terms that are more
closely aligned (i.e., high degree of textual similarity) with domain-specific terms.

One might think that using domain-specific terms instead of generic terms would help during the requirements trace-
ability activity since requirements are made up of domain terms. However, counter-intuitively, our work reveals that
it has exactly the opposite effect. Those ALs use more domain-specific terms during architecture model specification
(Early Architecture Description Languages and Domain-and Style-specific Languages) leading to an excessive number
of domain terms in the architecture models, hindering requirements traceability. In contrast, ALs that enable engineers
to use more generic and domain-independent terms to specify their architectures (General-Purpose/Research Languages
and Extensible architecture Description Languages) lead to more effective use of domain-specific terms, resulting in better
results during requirements traceability.

Furthermore, we have noted that the results of TLR are closely aligned with ALs’ grammar constraints. In some cases,
ALs’ grammar constraints are hindering requirements traceability with architecture models. In this paper, we consider
grammar constraints such as those barriers that ALs’ specifications apply to specify natural language from requirements.
This is because some ALs do not enable designers to specify open compound words from natural language requirements
in architecture models. Some ALs, such as Y_DON, MIND, or ARCHIMATE (those that best results achieve) enable
designers to define the term with spaces and special characters. Nevertheless, other ALs such as MODELICA, EAST-ADL,
or ACME (those that achieve the worst results) replace domain-specific terms’ spaces with a low bar, or directly remove
the empty space by joining the words which conform that term.

In order to illustrate this, we use the following requirement from a real-world train: “The PLC will disable the order of
‘pantograph equipment’s connection’ if the state of the knife switch is unknown, with the train in shutdown sequence.”
In that case, “equipment” is a domain-specific term that plays in a variety of industrial domains such as the aeronautic,
automotive, medical, nuclear, and railway domains, as well as many more. In addition, the domain-specific term “knife
switch” is a compound word that can be found in different ways depending on the architecture model, such as “knife
switch,” “knife_switch,” or “knifeswitch.”

We strongly recommend researchers and practitioners take that into consideration, defining and considering a list of
those terms which can be simultaneously present in both domain-specific languages as in architecture model specification
concepts. Another recommendation perhaps less obvious but no less important is the fact that some ALs have grammatical
constraints which hinder requirement traceability with architecture models. For this reason, we recommend refining the
initial architecture models through patterns to achieve the change of requirements and traceability links. AL designers
should not use words that are domain-specific terms and architecture model specification concepts at the same time. In
addition, AL designers should refine the generated initial architecture models in order to delete AL constraints such as
low bars or others.

Our results can help AL designers by providing them with which type of words play the same role on domain-specific
terms and on architecture model specification concepts (e.g., “equipment,” “door,” or “signal receptor,” among others)
in a way that generates noise in the architecture models and that hampers the requirement traceability performance.
Furthermore, our results are relevant to researchers and practitioners by providing them with information about the
differences among ALs (e.g., the number of architecture definition concepts required to specify a particular model element
in different languages). It enables practitioners to make more informed decisions about ALs and to choose the one that
best fits their needs in terms of requirements traceability.

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

720 BALLARÍN et al.

6 THREATS TO VALIDITY

In this section, we use the classification of threats to validity of References 61,62 to acknowledge the limitations of our
work:

1. Construct validity: This aspect of validity reflects the extent to which the operational measures that are studied repre-
sent what the researchers have in mind. In order to minimize this risk, we use objective and widely accepted measures
(Precision, Recall, F-Measure, MCC), which have been used before by other researchers in the community.63 More-
over, we performed a fair comparison among the ALs. We executed an independent run for each of the 16 requirements
for each of the 11 ALs considered for this study.

2. Internal validity: This aspect of validity is of concern when causal relations are examined. There is a risk that the
factor being investigated may be affected by other neglected factors. The choice of the k value in the application of
SVD can produce suboptimal accuracy when using LSI for software artifacts.64 In order not to affect the comparison,
we use the same k value when performing requirement traceability in each of the architecture languages. Although
evaluating the influence of the k value could be relevant, it is out of the scope of this study. In addition, we take
into account reliability. This aspect is concerned with to what extent the data and the analysis are dependent on the
specific researchers. The requirements and architecture models of the trains used in our experiment were provided
by our industrial partner’s engineers, as well as the domain terms, which were crafted by domain experts who were
not involved in this research. Furthermore, the experience in the use of ALs (ALs) by a system architect modeler can
impact the results. All of the system architects of our industrial partner have more than 15 years of experience in the
field. In order to mitigate this problem, all of the system architects have reviewed all of the models. That is, each system
architect verifies that the models constructed by the rest of the team are well constructed and a good representation
of the requirement.

3. External validity: This aspect of validity is concerned with to what extent it is possible to generalize the findings and
to what extent the findings are of relevance for other cases. The ALs used in our research to model the real-world CAF
architecture are a diverse set of ALs used in the industry that can be applied to different domains. In addition, the
RTAL approach does not rely on the specific conditions of any domain. Nevertheless, our results should be replicated
with other case studies before assuring their generalization.

4. Conclusion validity: This aspect is concerned with to what extent the data and the analysis are dependent on the
specific researchers. To avoid this threat, all of the inputs were provided by our industrial partner. Moreover, we
used precision, recall, F-measure, and MCC metrics to analyze the confusion matrix obtained in the evaluation. We
also employed standard statistical analysis following accepted guidelines50 (Quade test, Holm’s post hoc analysis, and
Vargha and Delaney’s ̂A12).

7 RELATED WORK

Requirements traceability plays an important role in the Software Engineering Community.65-70 In this section, we sum-
marize related works and compare this study with them with regard to the domain of Software Artifact Traceability. Table 4
presents a review of related works to requirements traceability. These works are classified in terms of target artifacts, lan-
guages used, and industrial evaluation. First, we introduce the state-of-the-art of traceability among requirements and
code, second, we describe the state-of-the-art of traceability among requirements and architectures. Finally, we present the
state-of-the-art of traceability among requirements and other software artifacts such as test cases or performance models.

Some works focus on the traceability between requirements and source code. For instance, Eaddy et al.71 present
a systematic methodology for identifying which code is related to which requirement and a suite of metrics for quan-
tifying the amount of crosscutting code. in Reference 65, the authors present an approach for locating the traceability
of functional requirements into artifacts such as methods, classes, and packages. Delater et al.69 present an approach
for tracing requirements and source code during software development to satisfy the information needs of developers
regarding requirements during development. Zisman et al.66 automate the generation of traceability relations between
textual requirement artifacts and object models using heuristic rules. However, these approaches deal with the trace-
ability between source code and requirements. In contrast, our work recovers the traceability between requirements and
architecture models.

Other works address traceability among requirements and architectures. For instance, Al-Saiyd et al.72 describe the
impact of changing the requirements in the architectural software design based on risks and the corresponding affected

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

BALLARÍN et al. 721

T A B L E 4 Related work overview

From requirements to Languages used Industrial evaluation

Eaddy et al.71 Code C# No

Shahid et al.65 Code Not specified No

Al-Saiyd et al.72 Architecture UML No

Zisman et al.66 Code UML Yes (Philips)

Sherba et al.67 Architecture Not specified No

Abbors et al.68 Test cases UML, QML No

Delater et al.69 Code UML, Java No

Han, J.73 Architecture HTML Yes (NATS)

Cleland et al.74 Performance models Java No

Bouquet et al.70 Test cases Not Specified Yes (Smart Card Industry)

This work Architecture 11 ALs Yes (CAF)

areas of the development systems. They explore the impacts of new or changing system requirements on existing and
future system goals and identify factors that may influence the software architecture design. Sherba et al.67 proposed
an approach, TraceM, that is based on techniques from open-hypermedia and information integration. TraceM man-
ages traceability links between requirements and architecture. TraceM enables the creation, maintenance, and viewing
of traceability relationships in tools that software professionals use on a daily basis. in Reference 73, the author proposes
a tool for managing system requirements, system architectures, and the traceability between them. The tool involves an
underlying information model that captures the key concepts and relationships of requirements engineering and archi-
tecture design. In contrast to these works, our work analyzes the influence of different ALs on RTAL, considering a set of
11 ALs used by industry.

Finally, some works deal with recovering traceability links among requirements and other software artifacts. in Ref-
erence 68, the authors present an approach for tracing product requirements across a model-based testing process, from
informal documents via test models to test cases, and back to requirements and test models. Cleland et al.74 address
traceability by proposing a method for establishing and utilizing traceability links between requirements and perfor-
mance models. The approach identifies where relationships exist between requirements and performance models and
supports the process of analyzing the impact of a proposed change upon the performance of the system through dynamic
re-execution of requirement-dependent models. in Reference 70, an approach to automatically produce the traceability
matrix from requirements to test cases is presented. In contrast, we evaluate the influence of using the most popular ALs
on RTAL, measuring the results based on four performance indicators, which include Precision, Recall, F-measure, and
MCC. Finally, we conclude by providing insights about how traceability links recovery can be improved in requirements
and architecture models.

8 CONCLUSION

Many ALs can be found today,4 each of which has the chief aim of becoming the ideal language for specifying software
systems architectures. In industrial scenarios, it is common to use different ALs to specify different software systems.
However, despite the popularity of different ALs, the question of how ALs influence software system maintainability has
not yet received much attention.

Motivated by this challenge, we have analyzed the influence of the ALs used by industry4 in one of the most commonly
performed activities during the software system maintenance phase: requirements traceability. Actively supporting trace-
ability is critical to the software engineering community in order to verify and trace nonreliable parts9 and to decrease
the expected defect rate in development software.10

We conducted an evaluation in the railway domain with our industrial partner CAF, a worldwide leader in railway
manufacturing. Requirements Traceability to Architecture Languages (RTAL) achieves the best results when the AL used
is a General-Purpose/Research Language. The next best results are achieved by those ALs that are classified as Extensible

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

722 BALLARÍN et al.

Architecture Description Languages. Those ALs that use more generic and domain-independent terms to specify their
architectures obtain better results during requirements traceability.

Our results can help AL designers by providing them with which type of terms play the same role on domain-specific
and on architecture model specifications in a way that generates noise in the architecture models and that hampers the
requirement traceability performance. Furthermore, our results are relevant to researchers and practitioners by providing
them with information about the differences among ALs enabling practitioners to make more informed decisions about
ALs and to choose the one that best fits their needs in terms of requirements traceability. As part of our future work, we
are planning to explore the influence of ALs on bug location.

ACKNOWLEDGMENTS
This work has been partially supported by the Ministry of Economy and Competitiveness (MINECO) through the Spanish
National R+D+i Plan and ERDF funds under the Project ALPS (RTI2018-096411-B-I00).

DATA AVAILABILITY STATEMENT
Data are openly available in a public repository that does not issue DOIs. The data that support the findings of this study
are openly available in the SVIT Research Group web at https://svit.usj.es/al-tlr-data/.

ORCID
Lorena Arcega https://orcid.org/0000-0002-2464-8894

REFERENCES
1. Martin JN. Overview of the revised standard on architecture description–ISO/IEC 42010; Vol. 31, 2021:1363-1376; Wiley Online Library.
2. Grau A, Shihada B, Soliman M. Architectural description languages and their role in component based design. Project Report, Department

of Computer Science, University of Waterloo, Canada; 2002. https://www.cs.uwaterloo.ca/∼bshihada/adl.pdf
3. Dashofy EM, Hoek AVD, Taylor RN. A comprehensive approach for the development of modular software architecture description

languages. ACM Trans Softw Eng Methodol (TOSEM). 2005;14(2):199-245.
4. Malavolta I, Lago P, Muccini H, Pelliccione P, Tang A. What industry needs from architectural languages: a survey. IEEE Trans Softw Eng.

2013;39(6):869-891. doi:10.1109/TSE.2012.74
5. Medvidovic N. Moving architectural description from under the technology lamppost. Proceedings of the 32nd Euromicro Conference on

Software Engineering and Advanced Applications, SEAA; 2006:2-3. doi: 10.1109/EUROMICRO.2006.47
6. Tian F, Wang T, Liang P, Wang C, Khan AA, Babar MA. The impact of traceability on software maintenance and evolution: a mapping

study. J Softw Evol Process. 2021;33:10. doi:10.1002/smr.2374
7. Gotel OCZ, Finkelstein ACW. An analysis of the requirements traceability problem. Proceedings of the 1st International Conference on

Requirements Engineering (RE 1994); 1994:94-101. doi: 10.1109/ICRE.1994.292398
8. Spanoudakis G, Zisman A. Software traceability: a roadmap. Handbook Of Software Engineering and Knowledge Engineering. Vol III;

2005;3:395-428. doi:10.1142/9789812775245_0014
9. Watkins R, Neal M. Why and how of requirements tracing. IEEE Softw. 1994;11(4):104-106. doi:10.1109/52.300100

10. Rempel P, Mader P. Preventing defects: the impact of requirements traceability completeness on software quality. IEEE Trans Softw Eng.
2017;43(8):777-797. doi:10.1109/TSE.2016.2622264

11. Landauer T, Foltz P, Laham D. An introduction to latent semantic analysis. Discourse Process. 1998;25(October):259-284. doi:10.1080/
01638539809545028

12. Rubin J, Chechik M. A survey of feature location techniques. Springer Berlin Heidelberg; 2013;29-58. doi:10.1007/978-3-642-36654-3_2
13. Wong WE, Gao R, Li Y, et al. A survey on software fault localization. IEEE Trans Softw Eng. 2016;42(8):707-740.
14. Salton G, McGill MJ. Introduction to Modern Information Retrieval. McGraw-Hill, Inc.; 1986.
15. Marcus A, Sergeyev A, Rajlich V, Maletic JIJ. An information retrieval approach to concept location in source code. WCRE.

2004;2004:214-223. doi:10.1109/WCRE.2004.10
16. Medvidovic N, Taylor RN. Software architecture: foundations, theory, and practice; 2010. vol. 2, 2010:471-472.
17. Feiler P. The open source AADL tool environment (OSATE). Technical Report, Carnegie Mellon University Software Engineering Institute

Pittsburgh United; 2019.
18. Schmerl B, Garlan D. AcmeStudio: supporting style-centered architecture development; 2004:704-705.
19. Beauvoir P, Sarrodie JB. Archi-open source archimate modelling; 2019. https://www.archimatetool.com, 2019.
20. Wallnau KC, Ivers J. Snapshot of CCL: a language for predictable assembly. Technical Report, Carnegie-Mellon University, Pittsburgh PA

Software Engineering Institute; 2003.
21. Magee J, Dulay N, Eisenbach S, Kramer J. Specifying Distributed Software Architectures. Springer; 1995:137-153.
22. Blom H, Lönn H, Hagl F, et al. EAST-ADL: an architecture description language for automotive software-intensive systems; 2013:456-470;

IGI Global.
23. Carmichael AR. Defining software architectures using the hierarchical object-oriented design method (HOOD); 1992:211-219.

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://svit.usj.es/al-tlr-data/
https://orcid.org/0000-0002-2464-8894
https://orcid.org/0000-0002-2464-8894
info:doi/10.1109/TSE.2012.74
info:doi/10.1109/EUROMICRO.2006.47
info:doi/10.1002/smr.2374
info:doi/10.1109/ICRE.1994.292398
info:doi/10.1142/9789812775245&uscore;0014
info:doi/10.1109/52.300100
info:doi/10.1109/TSE.2016.2622264
info:doi/10.1080/01638539809545028
info:doi/10.1080/01638539809545028
info:doi/10.1007/978-3-642-36654-3&uscore;2
info:doi/10.1109/WCRE.2004.10

BALLARÍN et al. 723

24. Van’t Wout J, Waage M, Hartman H, Stahlecker M, Hofman A. The Integrated Architecture Framework Explained: Why, What, How.
Springer Science & Business Media; 2010.

25. Bettin J, Cook W, Clark T, Kelly S. Knowledge industry survival strategy (KISS) fundamental principles and interoperability requirements
for domain specific modeling languages; 2009:709-710.

26. Van Ommering R, Van Der Linden F, Kramer J, Magee J. The Koala component model for consumer electronics software. Computer.
2000;33(3):78-85.

27. Consortium O. The MIND project; 2013. [Online 2014] http://mind.ow2.org/
28. Fritzson P, Engelson V. Modelica—A unified object-oriented language for system modeling and simulation; 1998:67-90; Springer.
29. Bellissard L, De Palma N, Féliot D. The olan architecture definition language. C3DS Technical Report; 2000:24.
30. Reussner R, Becker S, Burger E, et al. The Palladio Component Model. Tech. Rep., Karlsruhe Institute of Technology (KIT), Fakultät für

Informatik; 2011.
31. Luckham DC, Kenney JJ, Augustin LM, Vera J, Bryan D, Mann W. Specification and analysis of system architecture using Rapide. IEEE

Trans Softw Eng. 1995;21(4):336-354.
32. Becker S, Bulej L, Bures T, et al. Q-ImPrESS project deliverable D2. 1: service architecture meta model (SAMM). Project deliverable; 2008.
33. Deltour J, Faivre A, Gaudin E, Lapitre A. Model-based testing: an approach with SDL/RTDS and DIVERSITY; 2014:198-206; Springer.
34. Schriber TJ, Brunner DT, Smith JS. Inside discrete-event simulation software: how it works and why it matters; 2013:424-438; IEEE.
35. Booch G. The Unified Modeling Language User Guide. Pearson Education India; 2005.
36. Dashofy E, Asuncion H, Hendrickson S, Suryanarayana G, Georgas J, Taylor R. Archstudio 4: an architecture-based meta-modeling

environment; 2007:67-68; IEEE.
37. Feiler PH, Lewis B, Vestal S. The SAE architecture analysis and design language (AADL) standard: a basis for model-based

architecture-driven embedded systems engineering; 2003:1-10.
38. ACME, University. CM; 1998.
39. Lankhorst M, Proper H, Jonkers H. The anatomy of the ArchiMate language. Int J Inf Syst Model Des. 2010;1(1):1-32. doi:10.4018/jismd.

2010092301
40. Debruyne V, Simonot-Lion F, Trinquet Y. EAST-ADL — An architecture description language. In: Dissaux P, Filali-Amine M, Michel P,

Vernadat F, eds. Architecture Description Languages. Springer; 2005:181-195.
41. Belina F, Hogrefe D. The CCITT-specification and description language SDL. Comput Netw ISDN Syst. 1989;16(4):311-341. doi:10.1016/

0169-7552(89)90078-0
42. Khare R, Guntersdorfer M, Oreizy P, Medvidovic N, Taylor RN. xADL: enabling architecture-centric tool integration with XML; 2001:9.
43. Yourdon E. Modern Systems Analysis. Prentice-Hall; 1989.
44. Oliveto R, Gethers M, Poshyvanyk D, De Lucia A. On the equivalence of information retrieval methods for automated traceability link

recovery. Proceedings of the IEEE International Conference on Program Comprehension; 2010:68-71. doi: 10.1109/ICPC.2010.20
45. Antoniol G, Canfora G, Casazza G, De Lucia A. Information retrieval models for recovering traceability links between code and

documentation. Proceedings International Conference on Software Maintenance ICSM-94; 2000:40-49. doi: 10.1109/ICSM.2000.883003
46. Hofmann T. Probabilistic latent semantic indexing. Proceedings of ACM SIGIR; 1999.
47. Eyal-salman H, Seriai AD, Dony C, et al. Feature location in a collection of product variants: combining information retrieval and hierar-

chical clustering. Proceedings of the 26th International Conference on Software Engineering and Knowledge Engineering (SEKE 2014);
2014:426-430.

48. Apache OpenNLP - A machine learning based toolkit for the processing of natural language text; 2010.
49. Abeles P. Efficient java matrix library contents; 2010.
50. Arcuri A, Briand L. A Hitchhiker’s guide to statistical tests for assessing randomized algorithms in software engineering. Softw Test Verif

Reliab. 2014;24(3):219-250.
51. García S, Fernández A, Luengo J, Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in

computational intelligence and data mining: experimental analysis of power. Inf Sci. 2010;180:10. doi:10.1016/j.ins.2009.12.010
52. Vargha A, Delaney HD. A critique and improvement of the CL common language effect size statistics of McGraw and Wong. J Educ Behav

Stat. 2000;25(2):101-132. doi:10.3102/10769986025002101
53. Grissom RJ, Kim JJ. Effect Sizes for Research: A Broad Practical Approach. Earlbaum; 2005.
54. Yue T, Briand L. A systematic review of transformation approaches between user requirements and analysis models. Requir Eng.

2011;16:75-99. doi:10.1007/s00766-010-0111-y
55. Wang F, Yang ZB, Huang ZQ, et al. An approach to generate the traceability between restricted natural language requirements and AADL

models. IEEE Trans Reliab. 2020;69(1):154-173. doi:10.1109/TR.2019.2936072
56. Mishra P, Dutt N. Architecture description languages for programmable embedded systems. IEE Proc Comput Dig Techn.

2005;152(3):285-297.
57. Ozkaya M. The analysis of architectural languages for the needs of practitioners. Softw Pract Exp. 2018;48(5):985-1018.
58. Lago P, Malavolta I, Muccini H, Pelliccione P, Tang A. The road ahead for architectural languages. IEEE Softw. 2014;1:98-105. doi:10.1109/

MS.2014.28
59. Ozkaya M. Analysing UML-based software modelling languages. J Aeronaut Space Technol. 2018;11(2):119-134.
60. Amjad A, Haq SU, Abbas M, Arif MH. UML profile for business process modeling notation; 2021:389-394; IEEE.
61. Runeson P, Höst M. Guidelines for conducting and reporting case study research in software engineering. Sofw Eng Emp. 2008;14:131-164.

doi:10.1007/s10664-008-9102-8

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://mind.ow2.org/
info:doi/10.4018/jismd.2010092301
info:doi/10.4018/jismd.2010092301
info:doi/10.1016/0169-7552(89)90078-0
info:doi/10.1016/0169-7552(89)90078-0
info:doi/10.1109/ICPC.2010.20
info:doi/10.1109/ICSM.2000.883003
info:doi/10.1016/j.ins.2009.12.010
info:doi/10.3102/10769986025002101
info:doi/10.1007/s00766-010-0111-y
info:doi/10.1109/TR.2019.2936072
info:doi/10.1109/MS.2014.28
info:doi/10.1109/MS.2014.28
info:doi/10.1007/s10664-008-9102-8

724 BALLARÍN et al.

62. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A. Experimentation in Software Engineering. Vol 9783642290. Springer;
2012:1-236. doi:10.1007/978-3-642-29044-2

63. Haiduc S, Bavota G, Marcus A, Oliveto R, De Lucia A, Menzies T. Automatic query reformulations for text retrieval in software engineering.
Proceedings - International Conference on Software Engineering; 2013:842-851. doi: 10.1109/ICSE.2013.6606630

64. Panichella A, Dit B, Oliveto R, Penta MD, Poshyvanyk D, Lucia AD. Parameterizing and assembling IR-based solutions for SE tasks using
genetic algorithms. Proceedings of the 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER); 2016:314-325. doi: 10.1109/SANER.2016.97

65. Shahid M, Ibrahim S. A new model for requirements to code traceability to support code coverage analysis. AARJMD. 2013;1(14):
159-172.

66. Zisman A, Spanoudakis G, Pérez-Miñana E, Krause P. Tracing wsoftware requirements artefacts; 2003:448-455.
67. Sherba S, Anderson K. A framework for managing traceability relationships between requirements and architectures. STRAW’03 Second

International SofTware Requirements to Architectures Workshop; 2003:150.
68. Abbors F, Truşcan D, Lilius J. Tracing requirements in A model-based testing approach. Proceedings of the 1st International Conference

on Advances in System Testing and Validation Lifecycle, VALID 2009; 2009:123-128. doi: 10.1109/VALID.2009.15
69. Delater A, Paech B. Tracing requirements and source code during software development: an empirical study. ESEM 2013: ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement; 2013:25-34. doi: 10.1109/ESEM.2013.16
70. Bouquet F, Jaffuel E, Legeard B, Peureux F, Utting M, New-zealand H. Requirements traceability in automated test generation - application

to smart card software validation. SIGSOFT Softw Eng Notes. 2005;30(4):1-7. doi:10.1145/1083274.1083282
71. Eaddy M, Aho A, Murphy GC. Identifying, assigning, and quantifying crosscutting concerns. Proceedings - ICSE 2007 Workshops: 1st

International Workshop on Assessment of Contemporary Modularization Techniques, ACoM’07; 2007. doi: 10.1109/ACOM.2007.4
72. Al-Saiyd N, Zriqat E. Analyzing the impact of requirement changing on software design. Eur J Sci Res. 2015;136(1):62-73.
73. Han J. TRAM: a tool for requirements and architecture management. Proceedings of the 24th Australasian Computer Science Conference,

ACSC 2001; 2001:60-68. doi: 10.1109/ACSC.2001.906624
74. Cleland-Huang J, Chang CK, Sethi G, Javvaji K, Hu H, Xia J. Automating speculative queries through event-based requirements trace-

ability. Proceedings of the IEEE International Conference on Requirements Engineering 2002; January 2002:289-296. doi: 10.1109/ICRE.
2002.1048540

AUTHOR BIOGRAPHIES

Manuel Ballarin is researcher with the SVIT Research Group, Universidad San Jorge, Zaragoza,
Spain. He received a Ph.D. degree in computer science from Universitat Politécnica de Valéncia
(UPV). His current research interests include software product lines, model-driven development,
and software architectures. He publishes her research results and participates in high-level inter-
national software engineering conferences and journals, such as the International Conference
on Model-Driven Engineering Languages and Systems (MODELS), and Information & Software
Technology (IST) journal.

Lorena Arcega is Tenure Track Professor with the SVIT Research Group, Universidad San Jorge,
Zaragoza, Spain. She received a PhD degree in computer science from the University of Oslo,
Oslo, Norway. Her current research interests include models at runtime, software maintenance
and evolution, and variability modeling. She publishes her research results and participates in
high-level international software engineering conferences and journals, such as the International
Conference on Model-Driven Engineering Languages and Systems (MODELS), and Software and
System Modeling (SoSyM) journal.

Vicente Pelechano is a full professor of software engineering at Universitat Politécnica de
Valéncia (UPV). He received a PhD in computer science from Universitat Politécnica de Valén-
cia. His research interests are Model-Driven Software Development, Autonomous Computing
and Self-Adaptation, Service Engineering, Mobile and Ubiquitous Computing, Software Prod-
uct Lines, Human–Computer Interaction, and Business Process Modeling. He has more than
190 research papers in renowned indexed journals (Multimedia Tools and Applications, JSS, IST,
Transactions on the Web, etc.) and international conferences (ER, CAiSE, ICWE, Models, SPLC,
etc.).

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

info:doi/10.1007/978-3-642-29044-2
info:doi/10.1109/ICSE.2013.6606630
info:doi/10.1109/SANER.2016.97
info:doi/10.1109/VALID.2009.15
info:doi/10.1109/ESEM.2013.16
info:doi/10.1145/1083274.1083282
info:doi/10.1109/ACOM.2007.4
info:doi/10.1109/ACSC.2001.906624
info:doi/10.1109/ICRE.2002.1048540
info:doi/10.1109/ICRE.2002.1048540

BALLARÍN et al. 725

Carlos Cetina is associate professor with San Jorge University and the Head of the SVIT
Research Group. He received a PhD in computer science from the Polytechnic University of
Valencia. His research focuses on software product lines and model-driven development. His
research results have reshaped software development in world-leading industries from heteroge-
neous domains ranging from induction hob firmware to train control and management systems.
More information about his background can be found at his website: http://carloscetina.com

How to cite this article: Ballarín M, Arcega L, Pelechano V, Cetina C. On the influence of architectural
languages on requirements traceability. Softw: Pract Exper. 2023;53(3):704-728. doi: 10.1002/spe.3166

APPENDIX A. CHARTS WITH THE PRECISION AND RECALL RESULTS FOR EACH
REQUIREMENT FOR OUR REAL-WORLD CASE STUDY AND THE 11 ALS

F I G U R E A1 Mean precision and recall for the CAF case study for AADL

F I G U R E A2 Mean precision and recall for the CAF case study for ACME

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://carloscetina.com

726 BALLARÍN et al.

F I G U R E A3 Mean precision and recall for the CAF case study for ARCHIMATE

F I G U R E A4 Mean precision and recall for the CAF case study for EAST-ADL

F I G U R E A5 Mean precision and recall for the CAF case study for MIND

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

BALLARÍN et al. 727

F I G U R E A6 Mean precision and recall for the CAF Case Study for MODELICA

F I G U R E A7 Mean precision and recall for the CAF Case Study for PCM

F I G U R E A8 Mean precision and recall for the CAF Case Study for SDL

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

728 BALLARÍN et al.

F I G U R E A9 Mean precision and recall for the CAF case study for UML

F I G U R E A10 Mean precision and recall for the CAF case study for xADL

F I G U R E A11 Mean precision and recall for the CAF case study for Pantograph

 1097024x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3166 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

	On the influence of architectural languages on requirements traceability
	1 INTRODUCTION
	2 BACKGROUND
	3 REQUIREMENTS TRACEABILITY TO AL
	3.1 Natural language processing
	3.2 Textual similarity among model elements and the requirement

	4 EVALUATION
	4.1 Experiment setup
	4.2 Case study
	4.3 Implementation details
	4.4 Results
	4.5 Statistical analysis
	4.5.1 Statistical significance
	4.5.2 Effect size

	5 DISCUSSION
	6 THREATS TO VALIDITY
	7 RELATED WORK
	8 CONCLUSION

	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	AUTHOR BIOGRAPHIES
	APPENDIX A. CHARTS WITH THE PRECISION AND RECALL RESULTS FOR EACH REQUIREMENT FOR OUR REAL-WORLD CASE STUDY AND THE 11 ALS

