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Resumen 

 

El Renderizado en tiempo real es uno de los pilares fundamentales en cuanto al mundo 

de los videojuegos se refiere, ya que es imprescindible en la creación de imágenes 

elaboradas. Es un campo muy amplio y en constante expansión, sometido a 

optimizaciones y desarrollo tanto en el mundo del software como del hardware 

especializado (GPUs). 

 

Este campo no solo se refiere a la creación de gráficos sugerentes para videojuegos 

mediante la programación, también busca resolver problemas de modelado del mundo 

real, como la proyección de sombras, iluminación, creación de materiales realistas (PBR: 

Renderizado basado en físicas), simulación de fluidos e incluso aplicaciones fuera del 

ámbito de los videojuegos tales como simulaciones útiles para el campo de la medicina.  

 

Para conseguir dichos objetivos se implementan en constante evolución diferentes 

algoritmos y técnicas de renderizado, del más bajo nivel al más alto, desde la manera 

en la que se trata la geometría, hasta las técnicas de muestreado para sombrear un 

píxel. 

 

En este trabajo se incluyen ejemplos de diferentes técnicas que usadas en conjunción 

muestran un renderizado 3D en tiempo real donde el lenguaje de programación 

interactúa con la API de gráficos directamente, desarrollando programas específicos que 

se ejecutan en la GPU y gestionando los recursos necesarios para mostrar el potencial 

del pipeline de gráficos y cómo estos pueden ser mejorados mediante la ingeniería de 

renderizado. 
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Abstract 

 

Realtime Rendering, due to its importance in image creation and processing, is one of 

the main pillars within videogame development. It is a wide field which is constantly 

subject to optimization, expansion, and development in software as well as in specialized 

hardware (GPUs). 

 

This field is not only focused on fancy graphic generation for videogames through 

programming, but also solving real world modelling problems such as shadow projection, 

illumination, Realistic material creation (PBR: Physically based rendering), fluid 

simulations among others, it is also used to solve complex simulations within the medical 

field. 

 

In order to achieve said objectives several algorithms which are subject to constant 

improvement and evolution are implemented, from low to high level. Starting from how 

geometric data is treated to how a pixel shading is sampled. 

 

In this Project are included several techniques that used in conjunction show a 

functioning real-time 3D renderer where the programming language interacts with the 

graphics API, developing specific programs that are executed in the GPU while managing 

its resources to show the potential of the graphics pipeline, and how graphics can be 

enhanced through rendering engineering.
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1. Introduction 

The idea behind this project is to develop a Realtime Rendering 3D Engine from scratch, facing 

different engineering problems that must be overcome in order to achieve a good understanding 

of how the computer graphics pipeline works and how it can be enhanced to fit a particular 

implementation. 

This kind of work is commonly performed by a Rendering Engineer or a Game Engine Engineer, 

both positions are really attractive to me, and I aspire to fill one of them someday. They share a 

lot in common regarding the knowledge needed to design and implement complex architecture 

and systems. 

The project in question is Tesseract, a Realtime Rendering 3D Engine, in which you can see 3D 

models being represented with several effects achieved by implementing and adjusting different 

rendering techniques such as shadow mapping, normal or bump mapping and different shading 

models. 

During the development of Tesseract I have designed systems and architecture, performed QA 

passes for them, adjusted, debugged and fixed bugs that appeared during the development. I 

also implemented tools within the engine to do different tasks such as profiling to extract time 

information, or UI coding to represent values in real time and even a logging system to ensure 

the low-level systems work correctly. 

 

 

1.1. The role of the Rendering Engineer 

Considering several job descriptions offering this position from companies such as Apple, Rare 

and Microsoft among others, the Rendering team work closely with the Art and Design teams to 

help them achieve the artistic vision that is intended. As a Rendering Engineer your work is easily 

seen, as you work in graphics and graphic related tasks, ranging from working within the renderer 

to implement new features enhancing existing ones to optimizing code to achieve the desired 

performance. 

A Rendering Engineer work is closely related to the Renderer or Engine that is used to generate 

the graphics of the project in a closer way than, for instance, a Gameplay Engineer would be 

related to it, as the latter would not have to modify the engine but work with the given framework 

whereas the Rendering Engineer will have to modify it sometimes to fit the artistic vision or needs 

of the project. A strong knowledge of the different graphics APIs is needed to fulfill this role 

programmatically speaking, as implementations will sometimes vary and this will affect how data 

is treated and transmitted. A good example is handedness and endianness, the first one being 

API specific and the second one being Platform specific. 

A Renderer is the implementation of an architectural design that transforms data from the virtual 

world generated in the computer into an image, normally through the GPU by using different 

techniques depending on the artistic vision or implementation of other systems. There are also 

software Renderers which perform the graphics calculations in the CPU, in the past, when GPUs 
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weren’t so powerful or common, this was the norm. The features of a Rendering system are 

prone to be optimized and enhanced driven by the needs of the project. 

Being able to transmit into the Renderer the features that are needed to fulfill the Art and Design 

teams’ intention is the final objective of a Rendering Engineer. Rendering Engineers also serve as 

a bridge between the formality of code and the spontaneity of art, as sometimes the technology 

can’t follow the specification of the design. Being able to convey that and find a common spot 

between Art, Design and implementation is one of the most difficult but important tasks that this 

role needs to achieve. 

 

 

1.2. Other important roles in Game Engine Development 

It is safe to say that Game Engines are one of the most complex pieces of software a team of 

engineers can aspire to create. While it is possible to design and implement a Game Engine as a 

solo developer, it will not reach the level of game engines implemented by a group of engineers 

focused on it, as usually as a solo developer the final objective is not to produce a game engine 

but to create a game. 

 

Figure 1: Cryengine Sandbox Editor featuring a complex scene. 

Apart from Rendering Engineers, there are many other roles in need of fulfillment in order to 

create a professional engine. Core Engineers, Physics Engineers, Tools, AI, Network, UI, 

Animation, even Audio Engineers. Every system that needs to be implemented in the engine will 

need a professional that is able to work within the system. 

Core Engineers implement features at system levels and supports gameplay programmers while 

in production, they are also fundamental in the optimization stage of any project. Game Engines 

need to be optimized so gameplay can extract as much power as possible from the different 

platforms. Physics Engineers job, as the name implies, is to implement and develop features 

within the physics simulation of the engine. 
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Tools Engineering helps developing tools built on top of the engine systems that might help speed 

up the workflow of the team or to implement whole new tools that are needed for the 

development of games, good examples of this are visual scripting tools, animation sequencers… 

UI Engineering focuses on the visuals and user experience part of the engine, artists and other 

members of the development team need to be able to use the UI properly so it needs to be 

responsive.  

 

Figure 2: Animation bluepring editor in Unreal Engine 4.  
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1.3. The Rendering pipeline 

The Rendering pipeline is the sequence of steps that the graphics API takes in order to transform 

data from the virtual world into an image. Some steps from this pipeline are programmable, 

others can follow a set of directives set by the programmer before that particular stage happens. 

The DirectX 11 Graphics or Rendering pipeline programmable stages use the High Level shader 

language programming language (HLSL), making this pipeline flexible and adaptable to different 

rendering situations. 

The first stage is the Input-Assembler stage, where the vertex shader input is set following certain 

semantics available in the Graphics API such as POSITION, NORMAL, TEXCOORD... 

The programmable steps are the Vertex Shader Stage, the Hull Shader Stage, the Domain Shader 

Stage, the Geometry Shader Stage, and the Pixel Shader Stage.  

The Vertex Shader Stage processes vertices that come from the Input Assembler, it performs 

per-vertex operations such as skinning, morphing, transformations… There are some techniques 

that use the vertex shader to perform per-vertex lighting (Gouraud shading), but nowadays it is 

more common to perform them in the pixel shader to prevent certain artifacts from happening. 

The pipeline must have a vertex shader to work, even if it is a default one. The Hull and Domain 

Shader Stages correspond to the Tesselation Stage implemented since DirectX 11, the Tesselation 

Stage is commonly used to subdivide or join vertices depending on varied factors such as how 

far from the camera are those vertices, the level of tessellation… 

The Geometry Shader Stage, unlike the Vertex, operates with its input set to all the vertices for 

a full primitive, one vertex for a point, two vertices being a line, three for triangles… It can output 

triangle strips, line strips and point lists. Some algorithms that can be implemented in the 

geometry shader are those to generate Fur, or Dynamic particle systems among others. 

 

Figure 3: The Rendering Pipeline. 

Finally, the Pixel Shader Stage is the most flexible of them all, as it enables plenty of shading, 

lighting techniques and post-processing. Pixel Shaders can have different types of input, to 
finally output colored pixels, some of the most important inputs are: 

• Textures, which in computer graphics are, usually, information regarding a surface such 

as albedo, metallic, heightmaps, roughness, normal textures...  

• Sampler states, which are entities which allow the GPU to perform different types of 

filtering to textures, which is the way the pixel color is extracted from the texture into 

the shader to perform its calculations. Different types of filtering will have different 
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effects, for example, bilinear filtering is commonly used to smooth out textures when 

objects are bigger or smaller than they are in memory.  

• Constant Buffers, which are structs filled with constant data that are stored in GPU 

memory and can be accessed from the vertex and pixel shader. A common use for 

Constant Buffers is to store the different Matrices used to perform transformations such 

as translation, rotation and scale to the rendered entity, or the camera view or projection. 

• Structured Buffers, which are similar to the previous, but it contains an array of 

homogeneous structures that can be indexable instead of single data. A good candidate 

for a structured buffer could be a list of lights.  

• Output from the Vertex Shader, which are the interpolated per-vertex values such as 

position, color, texture coordinates, normal... 

It combines textures, the interpolated per-vertex values coming from the vertex shader and other 

data such as constant data generally set as constant buffers containing lighting information or 

transformation matrices for the entity that is being rendered, set as input for the shader in order 

to produce per-pixel output. 

One caveat of Pixel Shaders is that it will be executed per-pixel, this means that a high 

computational cost per-pixel can make the difference between being able to use an effect in real 

time or not. To avoid doing all lighting calculations for each single pixel we can use Deferred 

Rendering systems, however, due to its implications, Deferred Rendering can’t support 

Translucent objects. For this we can use Forward or Forward-Plus Rendering, which is a mix 

between Deferred and Forward rendering. 

 

Figure 4: GBuffer combination to produce a high-quality Render image in Unreal Engine 4 Deferred 
Rendering System. 
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2. State of the Art 

Game engines weren’t always so capable as they are nowadays, there were games that didn’t 

even have a game engine associated with. In the early years of game development games were 

developed by one person or a small team of people and information on the subject was sparse 

and not so easy to get. 

This resulted in really specific and small in-house engines being developed for games that had a 

slight bigger production, and that was not the general rule. As we will see in following chapters, 

game engines were popularized during the rise of 3D Computer Graphics during the 1990s. 

As game engines rose to being the rule and not an option, different development roles arose as 

well such as the Tools, Core, Engine and Rendering engineer. 

 

2.1. A brief History of Game Engines and Rendering 

Game engines and Realtime Rendering is the primary focus of this project, so we are going to go 

through some of the most important titles and why they were important to the evolution of this 

type of engineering work.  

Researching the predecessors of the actual engines will make a huge difference on how we 

understand the medium and why some of the actual engineering decisions are the way they are 

and how they evolved from the early times so we can make good design and development 

decisions for Tesseract. 

Doing this research, I decided to divide the information into several branches, but following a 

timeline. 

 

Figure 5: PONG! First game! 
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2.1.1. Before Game Engines 

In the early years of game development, games need to be written from the ground up as single 

entities, this means that no engine or common framework was shared between the different 

games that appeared on the market at that time. 

A particular example of this is that games for the Atari 2600 needed to be designed from scratch 

to make optimal use of the display hardware. These days, this is referred to as kernel by 

developers who still work on retro videogames (retro-developers). 

 

Figure 6: Space Invaders caption, this retro game helped rise Atari 2600 sales. 

Engines need a design heavily centered around data and memory, so even if the display was not 

an issue, these said limitations made it really difficult to develop and sabotaged different attempts 

to create engines to for this device. 

Even for platforms that appeared after this very little was reusable between different games, as 

the hardware was evolving really fast and there was no point in developing an engine that would 

be deprecated or unusable for the next console or computer that was out in the market. Also, 

games at that time had a hard-coded ruleset and very little graphics/levels data.  

Later on, Companies started developing small proprietary/in-house game engines to use for 

developing first-party software. 
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2.1.1.1. Construction Kits 

During the 1980s, several 2D creation systems were 

produced in the independent game development 

scene. They were called construction kits and some 

examples of these are the Pinball construction set from 

1983, Thunder Force Construction and Adventure 

Construction Set from 1984, Garry Kitchen’s 

GameMaker from 1985, Wargame Construction Set 

from 1986, Shoot’Em-Up Construction Kit from 1987 

and finally Arcade Game Construction Kit from 1988. 

As we can see from the Kit’s names, some of the game 

genres were defined very early on in the videogame 

history. 

The Commodore 64 was one of the most popular home 

computers and had plenty of games and construction 

kits associated with. It had BASIC built-in so learning 

to program using a construction kit was easy using this 

platform. 

This construction sets were from drag and drop onto a 

table to small level editors (Thunder Force was the first 

to implement a level editor) and small controls over the game logic for the most earlier versions 

to even game programming on the latter. 

 

Figure 8: Wargame Construction Set game example. 

  

Figure 7: Wargame Construction Set for C64 
front page. 
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2.1.2. In house/Proprietary Game Engines (1990s) 

Many of the first engines that were created were property of the companies they were developed 

in and mostly didn’t come out of those companies because at that time software licensing for 

engines was not a popular thing.  

There were some exceptions such as the Doom and Quake engine from Id Software, that had 

parts of its core software licensed to other companies to make their own games. 

In the following chapters we will see some of the most relevant engines from the first years. 

 

2.1.2.1. Space Rogue/ Ultima Underworld Engine  

The games developed within this engine were the first ones classified as being 3D due to the 

varying height and inclined surfaces that were implemented in order to create a 3D effect. It also 

used an algorithm to implement texture mapping to walls, floors, and ceilings. 

As everything was rendered in 3D and used physics, at this time this kind of technology needed 

really high-end systems, which were not so common at that time, and even there the execution 

was slow due to the high computational cost. 

 
Figure 9: Ultima Underworld: The Stygian Abyss. 

 

2.1.2.2. Doom / Id Tech 1 Engine 

The Doom engine release happened in 1993, it was used to develop Chex Quest 1+2, Doom, 

Doom II, HacX, Heretic, HeXen and Strife. 
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The Doom Engine was not truly a 3D engine. However, it did trick the player into thinking it was 

3D. This effect was achieved by using 2D sprites to represent characters, objects and anything 

untied with the environments specifically, where Id Software used height differences to difference 

it from everything else. As it was a 2D engine, that meant that rooms couldn’t be added on top 

of each other, but this allowed for less powerful hardware to render the environment in a quick 

way.  

 

Figure 10: Doom I from Doom Engine. 

2.1.2.3. Transitional Engines 

I would like to address transitional engines as well, meaning that these engines tried different 

technologies that helped produce better software in the future. Some of these engines are: 

NovaLogic’s Voxel Engine, which was used to create some of the props within Blade Runner, 

Comanche and Command and Conquer among others. It used a combination of the world’s 

volumetric and pixel to render 3D bitmaps rather than vectors, so this created a smoother and 

more detailed terrain, allowing for an also smoother gameplay. 

The Build Engine, which was similar to the Doom Engine, but used a grid system to divide the 

world so it could create a perfect 3D illusion still using 2D planes with sprites in it. By using a tag 

system, it allowed for quick transitions from room to room, creating the illusion of falling or moved 

through a hole when in reality they were teleported. Duke Nukem 3D was developed in the Build 

Engine. 

The first 3D engine was developed by Bethesda in 1995 and its name was XnGine, it was DOS 

based and had many bugs and stability issues in Windows 95, as it tackled for the first-time 

clipping, 3D transformations and collisions. Later on, it was able to use high resolution graphics, 

allowing for huge game worlds, shown in Daggerfall. 
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2.1.3. The first 3D Game Engines 

As we saw on the previous chapters, at the start the engines did not try to feature a real 3D 

simulation but faking it through diverse algorithms. However, as technology evolved, so did game 

engines, trying to create frameworks for full 3D, or similar simulations. 

 

2.1.3.1. LucasArts Jedi Engine 

The Jedi Engine was one of the most revolutionary engines at the time, it was developed by 

LucasArts and using it they developed Star Wars: Dark Forces among other titles. The innovative 

part of this engine was that all the objects were made as 3D models but then they were rendered 

onto bitmaps up to 32 different angles for each object.  

They also implemented a rudimentary LOD (Level Of Detail) system where the objects were 

rescaled depending on how close or far away from it was the player, allowing for a nice 3D look. 

It also allowed for jumping, crouching, and looking up and down, making the Jedi Engine one of 

the most advanced at its time. 

 

Figure 11: Star Wars: Dark Forces. 

 

2.1.3.2. Quake Engine 

Id Software jumped in into the 3D world with this engine, which was their first full 3D engine. 

Quake was made using this engine.  

To prevent being too intensive on processing power, this engine implemented Z-Buffering, which 

is a technique that only renders the areas the player is in by searching and checking for object 
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boundaries or how these boundaries were called, brushes. This technique sometimes allowed for 

a save of more than half the polygons from being rendered wastefully. 

On the Lighting side, they added 3D light sources on a second pass of the preprocessor, this 

enabled Quake engine to have a good 3D look and execute smoothly. 

 

Figure 12: Quake I. 

 

2.1.3.3. Renderware Engine 

The Renderware Engine is worth noting due to the high number of titles developed on it: over 

200 titles. This engine started losing its popularity due to the rise of hardware accelerated 

graphics, as it was developed prior to GPUs, and it did not implement a hardware rendering 

system to present its graphics. 

Eventually Epic’s Unreal Engine took over Renderware, which was very popular until that moment 

because of the ability to manipulate in real time art and game processes. 

 

2.1.3.4. Quake Engine evolution 

Quake II was an upgrade of the first Quake Engine, and it introduced OpenGL support, lighting 

effects featuring coloring and DLL loading.  

The DLL Loading is performed by writing the game in C and compiling as a DLL which the Engine 

loads in real time and executes for changes in game code. This system allows for a continuous 

execution as long as no breaking changes are made into the game code. 
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This engine was very popular due to its modding capabilities and because Id Software released 

the source code to the public to allow developers to create RPGs. 

 

Figure 13: Quake II 

After Quake II Engine, a tweaked version of the Quake Engine came out, GoldSource or GoldSRC, 

which featured both support for OpenGL and Direct3D and established PC’s dominance over 

consoles at that time. Even if it shares Quake Engine’s core, almost 70% of the code was rewritten 

in this version of the engine. Games like Half-Life, Team Fortress Classic and Counter Strike were 

developed in this engine, which helped promote 3D video cards with the API support and games 

that were developed. 
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Figure 14: Half-Life I 

2.1.4. The Evolution and Advances of 3D Engines 

As 3D Graphics were popularized and started being the rule rather than an unknown research 

field different game engines rose and fell. There was a constant evolution and intention of 

enhancing what was already done. As we will see in the following chapters, these engines started 

looking more like what we know today as 3D engines. 

 

2.1.4.1. Unreal 

The Unreal Engine was intended as a First-Person Shooter game engine, but it also became the 

base for many RPG games with Mass Effect among them. It was the principal competitor of Quake 

II engine from Id Software. 

As Quake II was modded constantly by its community and had a custom scripting language, as 

a response to that, Epic provided a map editor and modification program that was called 

UnrealEd. At this time, Unreal was capable of doing both software and hardware rendering, 

collision detection, colored lighting, and a very simple texture filtering implementation. Games 

like Deus Ex, Star Trek, and X-COM: Enforcer were made within Unreal Engine.  
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Figure 15: X-COM: Enforcer 

2.1.4.2. Quake III 

Quake III Engine was more than a refinement to Quake 

II, as it jumped from skeletal animations into per-vertex 

animation, this meant this engine was capable of much 

smoother animations. 

Other features were 32-bit color capabilities, shader, 

shadows, curved surfaces, and network capabilities that 

surpassed the other engines at the time. 

Quake III engine was used on Call of Duty and Medal of 

Honor: Allied Assault among other titles. 

 

 

 

2.1.4.3. Innovative Engines: Torque, Max-FX, GeoMod 

These engines were not a huge hit as Unreal or Quake III but presented innovative techniques 

such as destructible environments in GeoMod by using Boolean physics to get realistic in-game 

physics in Red Faction. 

Torque was created for the FPS Tribes 2 and had the capability to manipulate LODs on the fly so 

there were huge polygon rendering savings, along with having a built-in world editor and 

robustness. 

Figure 16: Medal Of Honor: Allied 
Assault 
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Max-FX was a hardware-only 3D rendering engine, and it introduced the famous The Matrix effect 

of dazzling bullet-time into the game Max Payne. 

 

2.1.4.4. Unreal 2 

This version of the Engine was a heavily modified version which featured integrated physics, 64-

bit support, improved special effects, realistic fluid simulations enabling for realistic moving water 

and was marketed saying it was able to handle 10 times more polygons than the previous Unreal. 

Games like Deus Ex: Invisible War and Splinter Cell were made using this engine, among many 

others. 

2.1.4.5. Gamebryo 

This engine was used to develop big titles like Fallout 3, Warhammer Online and The Elder Scrolls 

IV: Oblivion. 

It had cross-platform capabilities and it was the only third-party engine that had Nvidia PhysX 

directly connected with the Wii framework making the engine one of the most flexible at the time. 

It was written in C++ and supported many platforms and technologies such as DirectX 9, DirectX 

10, 3D Max and Maya integrations, Dynamic collision detection, particle systems, 3D Audio and 

Multiple-core development among other features. 

Around 200 games have been developed in this engine since 2003. 

 

Figure 17: The Elder Scrolls IV: Oblivion 

2.1.4.6. Doom 3 

Doom 3 Engine happened as a decision to switch from C to C++ as the core language of the 

engine, it allowed for realistic shadows due to the surfaces being calculated on real-time. 

However, it required performant hardware to run due to the unified light and shadow system, 

where almost every surface would pass through the same rendering pipeline. 
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Figure 18: DOOM III 

 

 

 

2.1.5. 2000s Modern 3D AAA Game Engines 

Different companies developed different game engines which explored plenty of fields in real time 

graphics. As console development was something important to take into consideration, a lot of 

game developer companies focused on optimizing the code within their renderers and engines to 

create performant and beautiful games within those consoles, which were and currently are a 

huge piece of market. 

In the following chapters we will see the most notable engines with their characteristics.  

 

2.1.5.1. Source 

Valve’s Source engine is now known as one of the most common engines, it was originally 

released in 2004, very relevant games in videogame history like Counter Strike: Source, Garry’s 

Mod, Half Life 2, Left 4 Dead and Portal were developed within this engine. 

This engine featured advanced Shader technologies, physics, dynamic lighting and shadows, 

different effects from which the most relevant were reflective water surfaces, real-time motion 

blur, lip-sync and facial animations. 
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Figure 19: Half Life 2 

 

2.1.5.2. RAGE 

RAGE was Rockstar’s Advanced Game Engine; it was created as a collaboration from said 

company with RAGE Technology. It quickly became Rockstar’s game engine. Grand Theft Auto 

IV was developed within RAGE. 

This engine featured different systems: rendering, physics, audio, network, animation, scripting. 

All into one package. They also had a Bullet physics engine. It was designed to handle realistic 

feeling while driving vehicles or walking. 
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Figure 20: Grand Theft Auto IV 

 

2.1.5.3. Frostbite 

DICE created Frostbite from the ground up thinking of multi-core PCs, Xbox 360, and PlayStation 

3 Development. Battlefield: Bad Company 1&2 and Battlefield 1943 were developed within this 

engine. 

It featured large destructible environments, building, foliage, and objects destruction, which are 

one of the key features of the Battlefield games. 

 

2.1.5.4. Anvil/Scimitar 

This engine was built from scratch by a group of Tool engineers for the Assassin’s Creed games. 

It featured fluid animation, and for this the engineers implemented a multithreaded system which 

also allowed for dynamic world loading. 

 

2.1.5.5. Unreal 3 

Unreal Engine was intended to be used as a multiplatform development engine, it featured PC, 

PS3, PS4, Xbox 360 and Xbox One. It featured multi-threaded rendering, 64-bit color, HDR 

rendering pipeline, Nvidia PhysX and several effects derived from it; particle effects, in-game 

cinematics, skeletal animation system which supported up to 4 bone influences per vertex and 

full mesh LOD support among many other programming features. 
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This engine was released in 2007 and was used to develop big hits like Batman: Arkham Asylum, 

Bioshock 1&2, Mass Effect 1&2… 

 

Figure 21: Batman: Arkham Asylum 

 

2.1.5.6. CryEngine, Dunia 

CryEngine was the predecessor of Dunia which was developed to feature the capabilities of Nvidia 

GeForce 3, it was released in 2004 and led to the development of Far Cry, which was very 

successful. 

It featured using Pixel Shaders for realistic water rendering in Far Cry, which immersed the player 

in the island, surrounded by a lot of vegetation. 

Crysis was also developed using this engine, and even nowadays, this very resource consuming 

DirectX 10 game is still used as a gaming benchmark. 

Dunia was used to develop Far Cry 2, and shared some design from CryEngine, but almost all the 

codebase was rewritten. It was designed to be more forgiving with low-end PCs, allowing for Far 

Cry 2 to be executed in hardware that was less powerful. 
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Figure 22: Far Cry 1 visuals. 

 

2.2. Recent History 

Game Engines have been moving towards a more generalist development approach, where 

games featuring completely different genres can be developed from the same engine and built 

for many different platforms. 

This development approach has its own caveats, as not having a genre specific engine can flaw 

performance sometimes among other things as we will see, having a lot of functionality might 

not be as good as it looks if we are not using it. 

We will review some of the most popular engines at the moment. 

 

2.2.1. Unreal Engine 4 & 5 

Unreal Engine has been slowly establishing itself as the king of high-end game engines due to its 

high amount of functionality and its good graphic quality.  

Unreal Engine 4 supports hardware raytracing among other things and Unreal Engine 5 evolved 

creating its own Global Illumination plus raytracing system called Lumen. It also features Nanite, 

which is a new geometry system which uses an internal mesh format to render pixel scale detail 

in high polygonal meshes. 

Both versions of the engine allow for a visual scripting system called Blueprint system as well as 

interoperability with C++ programming, which is the base language where the engine has been 

built on top. 
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Figure 23: Final Fantasy VII Remake running on Unreal Engine 4 

Unreal Engine has proven to be a good structure for many AAA games. It has been evolving for 

more than a decade and keeps adding new functionality and polishing what was existing 
previously. It is fully open source, which means anybody can clone it and modify the engine to 

implement new features or modify existing ones. 

However, some of the caveats of this engine are the lack of in-depth documentation for many 

systems and its steep learning curve. 

 

2.2.2. Unity 

Unity exploded as one of the most popular game engines for independent developers some years 

ago and featured plenty of big hits such as Hollow Knight, Escape from Tarkov and Cuphead. 

It features the capability of developing into both in 2D and 3D pipelines, it started having support 

for several proprietary scripting languages but moved towards C# along with their own hierarchy 

system where all unity scripts derive from, called Monobehaviour. This base class provides a 

framework and hooks into useful events used in game development. 

Even though it has been used to create big titles, it is not strong at AAA development due to 

several factors: 

• The source code of the engine is restricted to Unity, so you couldn’t fix a bug within the 

engine and would have to wait Unity to fix it for you. 

• The graphics and light pipeline are not as advanced as Unreal’s so trying to get similar 

visuals would take longer and not have the same quality. 

Even if not intended for AAA games, Unity still stands as a really good option for indie and mobile 

development. 
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It has been used by students as well as experienced developers so there are a lot of resources 

on the Internet. It is quick and easy to use, the development process allows for fast iterations 

and allow for deploying in a variety of platforms. 

 

Figure 24: Cuphead 

 

2.2.3. Godot 

Godot is a very flexible engine which can handle 2D and 3D games and presents an interesting 

system where every entity of the game is a node.  

This engine can be compared to Game Maker, and chosen over it to develop 2D games, it has its 

own scripting language inspired by python, GDScript, but also supports C# and C++ 

development.  However, the 3D engine is not ready for complex game development due to the 

rendering system not being as powerful as the ones from its competitors yet and not having as 

many features. 

Godot is also free and completely open source but does not support built-in console development 

due to licensing. 

iOS and PS4 ports of Deponia were developed in Godot. 
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Figure 25: Deponia 

2.3. Tesseract 

Tesseract is a small engine centered in the 3D Realtime Rendering aspect of it. During the 

development, as we will see in the Development section of this document I have designed and 

implemented several rendering features used by actual game engines and some other features 

that are needed into this kind of software. 

Some of these said features are integrating ImGUI as an Immediate mode UI, Third-Party 

software integrations, textured mesh support, a simple shader system and a simple profiling 

system and Logging system among some others.  

As for the rendering aspect of it some of the most relevant features implemented are Texture 

mapping, Bump and Normal mapping, shading models support, shadow mapping and a free look 

camera among others. 

 
Figure 26: Tesseract engine prototype featuring windows with different information contained. 
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3. Objectives 

Tesseract is an exploration of how game renderers and engine architecture work in the practice. 

I will be focusing on the rendering and effects that can be achieved by graphics programming; 

this means that I will implement several visual features in the Rendering Engine. My main 

objective is to design and implement all these features as good as possible. 

These objective features can be broken down into several points: 

• Integrate the graphics API, in my case DirectX 11, into a set of functions that extract the 

functionality, so future integration of different graphics APIs can be performed gracefully. 

• Integrate a set of utils into the engine such as containers or math libraries, in my case 

DirectX Math. 

• Adjust the graphics pipeline to fit the needs of Tesseract’s features. Projecting 3D meshes 

with their textures, normal mapping, lighting, and shadow mapping among others. 

• Continuous integration of profiling and debugging UI tools into the Engine. 

During the development time of this project, I implemented different features into the profiling 

side such as ImGUI integration to create Immediate mode menus and UI to interact and be able 

to see data changes or choose between different options, and a platform agnostic time delta and 

frame system. I also integrated Assimp and DirectX Tools to create an asset loader to load into 

memory 3D meshes along with their textures. EASTL (Electronic Arts Standard Library) was my 

choice to implement containers into Tesseract. 

In the Renderer I implemented Primitive rendering, Complex Mesh Rendering, for the lighting 

Lambert + Phong model and GGX. Texture mapping and Bump/Normal mapping to generate 

geometric complexity in texture space and Shadow mapping among others and a free look camera 

to move around and inspect from different angles and distances. 

Different people who looked at it, ranging from not professionals to rendering engineers have 

manifested it “looked really good”. 

All this checks all four points that were stated as objectives. 
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4. Methodology 

The development of Tesseract was done completely on my own. I learnt what I needed by reading 

books and querying Engineers and Rendering Engineers with my doubts and questions. From 

time to time, I revisited the design I had for the project and updated it, as design follows 

engineering capabilities and queried again people with more experience than me to be able to 

enhance my systems.  

4.1. Tools 

As workstations, I have been working on a laptop and on a Desktop PC, each with different 

hardware. 

Several software tools have been used for the completion of this project. Discord has been the 

application we have used in order to communicate, when necessary, to establish reunions or 

exchange messages. 

To keep track of tasks I have used HackNPlan, which is a tool that allow the user to organize and 

keep track of work. As a user you can create notes in a board, each note represents a small task 

or ticket that a person needs to do. In my case, as I am developing this alone, I only created 

tickets for myself. This tool is helpful to know how much time you spend doing a certain task, 

how priority is a certain task and if some of the tasks need more work. My revision policy was 

doing one small sweep each morning and a thorough one each Wednesday to know how the 

week start was going. This is done similarly in some agile methodologies which involve sprints, 

such as the scrum methodology. 

 

Figure 27: HackNPlan board with several tasks. 

As the version control system, I mostly used git on Windows Terminal. However, if I needed to 

keep visual track of commits or needed an interface for some reason, I used tools like SourceTree 

or Github Desktop. 
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Figure 28: Github Desktop Commit inspection view. 

The language I used was C/C++, as it is one of the programming languages, I am most confident 

with. To debug the CPU processes and develop I used Visual Studio 2019, Visual Studio 2022, 

and Visual Studio Code, which are IDEs with a lot of integrations and functionality such as memory 

watches, call stack inspection, dependency management… 

One of the most relevant tools I used to develop the Rendering Engine was RenderDoc, which is 

a graphics debugger. It works simply by attaching to the program and capturing one or a few 

frames so you can see the program state within the different stages of the rendering pipeline and 

inspect closely, edit shaders, and relaunch the frame, inspect buffers, framebuffers, textures, 

configurations…  

This makes correct configuration and graphics programming faster and easier, allowing the 

developer to spot bugs faster, this, to me has been a lifesaver on several occasions where I did 

not know what the error was because I couldn’t inspect directly from Visual Studio shader variable 

values, RenderDoc solves that issue flawlessly. 
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Figure 29: RenderDoc Pipeline state view. 

 

 

Figure 30: RenderDoc frame debugging. 
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5. Development 

Software developing, most of the time, follows an iterative process, where it changes and mutates 

constantly throughout the development. A game engine as Tesseract makes no exception. Every 

system on the Engine has been programmed, tested, tweaked, redesigned and reimplemented, 

sometimes these changes are not so visceral. However, once a system is correctly implemented 

there is not such need of constantly changing it if it does not need it for the engine to function 

properly. 

The following chapters depict how Tesseract came to be and what decisions had to be made. 

 

5.1. Available Technology, why C/C++ and DirectX 

Before starting to design and implementing systems I had to choose a language and a main 

Graphics API to build Tesseract.  

I wanted to do this right, so I researched what were the most used languages in game engine 

development and why, and it came out that C/C++ was king due to the low-level memory 

management capabilities it offers the programmer. After that, Rust and C# were featured by 

some indie developers who coded their engines on those languages. 

The choice for the graphics API was clear to me, DirectX 11. It has been the standard for many 

games in the industry for quite a long time. Even though nowadays there are some systems being 

implemented in DirectX 12, I chose DirectX 11 for simplicity’s sake as both are similar, they only 

differ on how DirectX 12 is closer to the metal than the 11 version. 

I also installed some engines in my workstation so I could see how they did certain things and 

took notes, for instance, which UI systems I liked most, immediate mode, or event based among 

other things. 

 

5.2. Game engine design 

Following Jason Gregory’s knowledge of Game Engines Engineering imparted in his book, Game 

Engine Architecture, an Engine is the combination of all its systems, that we can differentiate in 

the following: Low-Level Engine Systems, Graphics, Motion and Sound and Gameplay. 

General purpose game engines exist, but they are limited in some ways, as no engine is perfect 

for every situation. Thankfully, some engines allow developers to modify them to fit their own 

purposes if they do not want to create a proprietary engine, which is a high time and resource 

consuming task. 
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Figure 31: Game Engine Reusability. 

The Low-Level Systems comprise the Support Systems which include all math utils, memory 

management, containers, basic data types such as strings, vectors, matrices…, configurations, 

initialization, and shutdown of the different systems. In Tesseract, some of this basic support 

systems were implemented by me such as some vector operations that the DirectX Math library 

did not support out of the box, and some others were brought in by external libraries that we will 

talk about in next chapters such as EASTL. 

Some of the different systems that comprise a game engine are: 

• The File System and Resource Management systems, which allow to load and unload 

different files into memory as well as interpreting them into the data types the engine 

will use.  

• The Game Loop and Rendering Loop, or Realtime simulation is the central part of the 

game, it splits into three main parts: initialization, update and draw. 

o Initializing the game and setting up the environment for the update and draw 

phases are both done during this phase. Here, we should set up the menu, 

identify the hardware's default capabilities, and construct major entities.´ 

o The update phase's primary goal is to get everything ready for drawing, therefore 

this is where the physics code, coordinate updates, health point changes, 

character upgrades, damage given, and other similar activities belong. 

Additionally, the input will be recorded and processed here. 

o Finally, the draw step, when all of this information is displayed on the screen, 

once everything has been properly updated and is prepared. All the code 

necessary to handle and draw the levels, layers, characters, HUD, and other 

elements should be contained in this function. 

• The Animation systems will handle the different types of character animation, skeletons, 

poses, skinning, blending… 

• The Physics engine handles Collisions, rigid and soft bodies, dynamics, simulations… 

• The Sound system could be as simple as being able to play a loop sound, clip or even 

handling sound in a physical mathematical way, as audio can behave as a wave in the 

3D world. 

• Input System such as recording keyboard key presses and mouse clicking. Input can be 

read in a variety of different ways: raw, applying post-processing, mapping inputs to 

predefined sets… 

• Debugging and Profiling Tools such as Logging, Tracing, Debug drawing, Menus, Console, 

Debug cameras…  
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• The gameplay systems need to be implemented thinking of reusability and 

interoperability in the Game World Editor within the engine, without forgetting that the 

Game Loop needs to be optimized enough for the game to be able to play in Realtime at 

a performant framerate. We usually talk about game objects or entities, depending on 

how the architecture of the game is designed.  

• The Graphics system or Rendering Engine will be in charge of producing high-quality 

images from the input provided by the engine such as 3D polygons, textures, camera 

data and lighting data. It follows the previously seen Rendering pipeline, which is usually 

modified to fit the purposes of the game engine project and is able to be extended to 

implement features such as advanced lighting, global illumination, overlays, antialiasing, 

shadow projection… The renderer is a piece of software that is written to take advantage 

of the features in the GPUs and is prone to receive code optimizations regularly to comply 

with performance requirements (such as outputting a frame every 1/60th of a second). 

Renderers also need to get data from other systems such as physics for positions, file 

system for textures, animation if a polygon needs to be moved somewhere else… so this 

systems communication needs to be designed carefully to be performant and have 

healthy data transfers.   

 

Figure 32: Unity Profiling Toolset. 

One of the different ways of achieving that performance is following a data-oriented mindset, 

which I did while developing Tesseract and we will talk about more in the following chapter. I 

wanted to focus on how the systems treated and structured data and outputs so the next system 

in the pipeline could take it from there and do their job. 
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5.3. Data Oriented Design 

As previously said, I wanted to follow a data-oriented mindset during the development of 

Tesseract.  

Data-oriented design is a method to optimize programs that has been used especially in video 

game development to make the most effective use of the CPU cache. Focusing on the data layout, 

separating and organizing fields based on when they are needed, and considering data 

transformations are the main objectives of this approach.  

To understand why this approach to programming is more performant, we will need to take a 

look at the principle of Locality of reference, which in computer science, is the inclination of a 

processor to repeatedly access the same set of memory locations during a brief period of time. 

There are two basic types of localities that are the ones of importance for this subject: 

• Temporal Locality, which is the reuse of certain data and/or resources across a brief 

period of time. This means that if a particular memory location is accessed at some point 

in time, it will be likely that the same location will be again referenced in the future. Then, 

it is common to try and store the data within that memory location in a faster memory 

storage such as the CPU L1 Cache to reduce the latency of following references. 

• Spatial Locality or Data Locality, which is the usage of data elements that are relatively 

close between them regarding their storage location. There is a special case for this 

locality: Sequential locality, which occurs when data elements are laid and accessed in a 

linear fashion such as traversing one-dimensional array elements. This means that if a 

memory location is referenced at some point, then it is likely that the nearby memory 

locations will be referenced shortly after. Some techniques regarding this attempt to 

guess the size of the area around the reference to prepare the access to the next one 

faster. 

Thanks to these principles, systems that present a strong locality of reference are prone to be 

optimized with techniques such as caching or prefetching memory. 

Caching is a technique that takes advantage of the CPU caches, which are the fastest type of 

memory available to the computer. These pieces of memory are small and close to the processor 

cores, featuring a hierarchy of different levels such as L1, L2, L3 and even L4 varying in speed 

and size. Caching involves laying data in the program in a way that it can be accessed linearly 

from the CPU cache, and sometimes even considering the size of the CPU cache when 

programming for a specific platform where the programmer knows the hardware specification, 

avoiding unnecessary cache misses. Some techniques used by DOP involves having Structures of 

Arrays (SoA) and Arrays of Structures (AoS) for different data depending on how it will be 

accessed from the CPU. 

A practical Example would be the position of an entity, usually we will want to access the X, Y 

and Z members of position together, so there would be no point in having a struct that would 

split the three members, in that case a AoS would be superior to a SoA. However, if we had a 

component that had several members that were accessed individually a SoA would be faster. 
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Figure 33: Array of Structs, in contiguous memory. Red:X,Green:Y,Blue:Z. 

 

Figure 34: Struct of Arrays, in contiguous memory. 

 As we can see, these two figures depict the previous example, the first image would be faster 
to access due to having the data that is being accessed close together. The second image would 

be faster if every member of the struct was accessed individually. 

 

Figure 35: The Witness, a game that uses a Data Oriented approach. 
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Prefetching nowadays is done automatically by the CPU by loading the following memory 

addresses contents into the CPU cache so if the following instructions need them, it will be already 

loaded and the CPU will not stall or generate a cache miss, which is when a CPU doesn’t have 

the data element needed by the instruction and will need to fetch it from memory and load it into 

the cache so it can be used. Optimization techniques that structure the programs around the CPU 

cache tries to avoid this, as fetching and loading data into the cache unnecessarily wastes a lot 

of processing time.  

As we can infer from the information, Data Oriented Programming (DOP) is about how the data 

is laid and accessed instead of what it could represent. DOP separates data from functionality, as 

generally the functions are general purpose and can be used with large amounts of data in any 

point of the process. 

As CPUs are friendly towards locality of reference, DOP rules create many benefits such as 

allowing for a much easier way to implement Parallelization to execute tasks simultaneously, while 

in Object Oriented Programming (OOP) this can be hard due to the collision of multiple threads 

trying to access the same data. In DOP, as we group similar data together and write code focusing 

on the data processing in general, it becomes easier to task multiple threads to process those 

functions. As we can see in the following Figures, it would be easier for the CPU to parallelize the 

execution if the data was laid out similar to Figure 9, regardless of the usage of SoA or AoS in 

those data layouts. 

  

 

 

 

 

 

 

 

 

 

 

 

On the CPU side of the design, I wanted Tesseract to be as friendly as possible towards memory 

and the CPU cache so my program could run smoothly. This design paradigm is widely used in 

video game development and focuses on the data layout and the principle of locality, as we saw 

previously.  

Figure 36: Access of data by paralell threads 
if data is laid out following a DOP approach. 

Figure 37: Access of data by paralell threads if 
data is not laid out following a DOP approach. 
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This paradigm became popular during the seventh generation of video game consoles (PS3 and 

Xbox 360) due to their lack of CPU processing power chosen to redirect more power and budget 

towards the GPUs. 

Data Oriented Design organizes code around data and tries to create good data locality in order 

to generate as few cache misses as possible. 

 

5.4. Systems & Architecture 

A game engine is a very difficult piece of software that needs many different systems depending 

on the target development idea and an architecture that supports all of them in a performant 

way. 

In Tesseract’s case, due to the limitation of time and resources, I chose to go for something 

simple but well done and implement several features that are, to my opinion, the base features 

every real-time renderer should implement. 

 

 

5.4.1. Third-Party integrations 

As Tesseract needed some base functionality, I 

needed to integrate some external code, this is 

something very common in software 

development, as it is a monolithic enterprise to 

implement everything you need by yourself, you 

usually need to use dependencies. 

In my case, I added my own type definitions to 

know the size and type in a way that was more 

readable for me. 

DirectXMath was my choice for vector/matrix 

math operations, it supports fast mathematical 

expressions through SIMD operations (Single 

Instruction Multiple Data) which operates by using 

the bigger registers on the CPU. 

The standard C++ library is okay for development, however I integrated EASTL instead, which is 

a version of the standard library focused on game/game engine development and done by 

Electronic Arts. It is very complete and support quite some features which are useful while 

developing while keeping performance up compared to the standard library. 

For file loading I chose Assimp (Open Asset Import Library), which is a very well-known piece of 

software to load file assets into memory, I used it to load 3D models. However, all the processing 

of the model data such as extracting textures from the material to load them separately, 

Figure 38: Tesseract type definitions 
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extracting the vertex information and position and creating my own data layout is done in 

Tesseract’s code.  

In order to load textures and work with Mip Maps I integrated DirectXTools, which is a set of 

functions and separate programs that allow you to create and process data to use within the 

DirectX Pipeline, in my case DirectX 11. 

Finally, I needed a GUI system, and I integrated ImGUI, which we will talk about more in a later 

chapter, it is an Immediate Mode UI library, open source and highly customizable, supported by 

AAA game companies such as Activision, Blizzard, King… 

 

5.4.2. Mesh, Textures, Shader 

As previously mentioned, the Model information is loaded into memory by Assimp, from there, I 

process the information to only store in my dedicated memory layout what I need and in the 

correct order. 

A common Model would contain: One or more Meshes, different textures, mathematical 

information per vertex such as normal, binormal, tangents… Along with other information such 

as vertex color presence, coordinate system, this last one is usually tricky, as not every software 

uses the same coordinate system, some uses Left Handed systems and others Right Handed, this 

forces for further processing to transform the coordinate system from one to another if needed.  

This allowed to store vertex information performantly while keeping the different objects within 

the model differentiated. I allow rendering of 3D models with different meshes within with their 

own textures and without the need for loading them separately, as Tesseract’s code will handle 

it. 

The texture names and path are extracted from the Model information and loaded later into the 

asset pipeline, where the bigger texture size is chosen and all the subsequent Mips are generated 

for correct rendering at different distances. 

Also, I differentiate from Linear and sRGB information textures, converting them in order to do 

calculations in a correct way and not miss color information. 

Currently the shaders I use within tesseract for entities support bump/normal mapping, simple 

lighting, and shadow mapping, Linear/sRGB conversion on the fly if needed, Lambert for diffuse 

and Phong for specular values and a prototype version of GGX as different shading model options. 

As we will see in later chapters, to implement shadow mapping several shaders needed to be 

created in order to generate the information for the shadow reprojection.  

 

5.4.3. UI and Profiling 

ImGUI is a very popular UI system which has a low processing performance hit, this is why a lot 

of games such as League of Legends Teamfight tactics engine use it. 
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Figure 39: Teamfight Tactics from League of Legends using ImGUI 

It allows for quick implementations without the need for creating callbacks or waiting for events. 

In Tesseract I used it mostly for debugging reasons or to implement quick tests for the vertex 

transformation or visualization of textures or textures for the shadow mapping to ensure it was 

loaded and in good state. 

Another feature I implemented was a camera information visualizer which allows to see the 

camera vectors, direction, position, orientation… It proved really useful when implementing the 

free look camera, as it was tricky. 

It is in constant evolution and open source, so any user can modify its source code and recompile 

it fast. The viewport used in Tesseract is a ImGUI window within the Windows window handle, 

which I configured and spawned communicating directly with the Windows OS through Microsoft’s 

windows built-in libraries. 

Currently the UI system in Tesseract allows for free move and docking, resizing of windows, and 

even moving the windows outside the main window handle, though this is not recommended as 

it requires additional processing power and reduces performance significantly. 

 

5.4.4. DirectX11 Graphics API 

DirectX 11 was the chosen Graphics API, I decided to work directly with this API in order to learn 

how graphics API’s work, as they are all similar, they only differ on implementation mostly, but 

the required steps are mostly the same, with the exception of Vulkan and DirectX 12 which are 

closer to the metal and require the programmer to fill many descriptor structs for the correct 

functionality which translates to better performance if done correctly. 
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The DirectX framework is developed by Microsoft, so it has a lot of documentation and support 

throughout the Internet, as it is one of the standards. 

The DirectX 11 workflow for initializing it in Tesseract is composed of several steps: 

1. Creating the Device and Swap chain, which gets the GPU information and configuration 

from the descriptor and initializes the swap information for the framebuffers. 

2. Creating the Back buffer and Render target views, which are the buffers and handles to 

show them on screen. 

3. Initialization of Render Target, Depth Stencil Textures. 

4. Initialization of Depth Stencil Buffer and Depth Test Resources, which composes all the 

elements that are needed by the shadow mapping. 

5. Initializing the main viewport (windows window) and the game viewport (ImGUI 

window). 

6. Initializing the different samplers that are used to extract information of textures. 

 

Figure 40: Tesseract DirectX 11 Initialization function. 

As a side note, all functions that starts with TSR are Tesseract engine specific. 

Other functionality I implemented are the use of structured buffers, which require specific 

configuration to be used within shaders but allow for an array-like access of multiple resources 

within the same shader. 

 

5.4.5. Transformation Matrices and Camera Projection 

In computer graphics, matrices are widely utilized, and matrix transformations are one of the 

fundamental building blocks of any visualizations. A series of matrix transformations enables the 

display of 3D objects on 2D screens. 

All these transformations are done in an affine space, which is a space that generalizes the 

geometric properties of Euclidean space. This means that these spaces define how points, lines 

and planes are allowed to transform. In this case Lines need to stay linear, planes planar and 

parallel lines parallel.  
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Also, there is a fourth coordinate included in all calculations called the homogeneous coordinate, 

or w, which allows for an 4D Homogeneous Space/coordinate system. The w coordinate scales 

the x, y and z dimensions. When w is equal to one, the coordinates stays the same due to not 

being scaled, in 3D graphics w is usually set to 1 so it doesn’t have effect on the x, y and z values. 

As we cannot divide by zero, when w is that value, we interpret that as a direction vector. 

Transformations are presented in a Transformation Matrix, which is composed of the 

multiplication in order of three different matrices: 

• Translation Matrix, which moves objects with respect to their current locations. In the 

following figure we can see the translation defined by the T vector. 

 

Figure 41: Translation Matrix 

• Rotation Matrix which rotates objects around the x-, y-, or z-axis. The following matrices 

define this rotation about each axis if the desired angle of rotation is theta.  

 

Figure 42: Rotation around predefined axis 

 

• Scale Matrix, which given a vector with three members each one of them representing 

the scale along a 3D axis, would generate a 4x4 matrix which we will see in the next 

figure.  

 

Figure 43: Scale Matrix 
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These matrices are combined into a single matrix, calling the Translation matrix T, the Rotation 

Matrix R and the Scale Matrix S. The Transformation matrix or Model Matrix is calculated by 

multiplying the matrices in this order: TRS. 

The Model Matrix is unique per entity in the world. This Matrix allows for transforming the vertices 

from the 3D model from the Model or Object space into the World Space, as we can see depicted 

in the following figure. 

 

Figure 44: Model Space and World Space. 

In order to project onto the 2D display the series of different objects we need to define two more 

matrices which will be the View and Projection Matrices: 

• View Matrix, which converts from world space to camera or view space. This matrix is 
defined by the camera eye position and the up, forward and right vectors, orthogonal 

between them. It needs to follow a handed system. In Tesseract’s case, as DirectX, I use 
a Left-Handed system, which defines the Z positive axis pointing away from the camera 

eye and the Y axis pointing Up. 

 

Figure 45: View Matrix 

• To construct a projection matrix, we will need to define a view frustum, which is a volume 

of space that is potentially visible to the camera. It is comprised of six clip planes, being 

the near and far planes the most important as they correspond to certain camera space 
Z values. The far clip plane prevents rendering objects that are farther than that Z value. 

The projection matrix maps the view frustum into the homogeneous clip space. 

 
Figure 46: View Frustum. 
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All these matrices needed to be calculated within Tesseract’s systems to render properly the 3D 

world to the viewport. 

 

5.4.6. Free look camera Tool 

A free look camera tool is highly important to debug rendering features, being able to move 

around the 3D world and look at things from different angles. Moving closer or farther it makes 

a huge difference both for debugging and implementing features and systems because it allows 

to spot bugs and things that were not failing but were neither working as expected, although I 

couldn't see it from a different point of view. 

Following the previous investigation on the different coordinate systems and matrices present in 

computer graphics. A camera that can traverse the 3D world is essential in 3D graphics. 

 

 
Figure 47: Tesseract's Free Look camera and camera details panel 

 

 

5.4.7. Texture Mapping  

This technique allows for models to be represented with the textures associated to it in the 3D 

world. It requires several steps to use it correctly: 

1. Texture Coordinates needs to be properly generated at some point of the pipeline. 

2. Binding the texture coordinates to the shader and also binding the correct texture for 

each model along with its mipmaps. 

3. Configure and bind sampler in the DirectX 11 pipeline to extract color samples from the 

texture so we can paint our model. 

As Tesseract allows for multiple meshes within a model and each mesh can feature a different 

number of textures the shaders needed to be prepared for this. 

Stretching an image over a 3D object's surface is known as texture mapping. A texture is what 

we call an image utilized in this way, and we may use textures to indicate things like color, 

roughness, and opacity. 
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While stretching a 2D texture over a standard shape, like a cube, is simple, doing it with irregular 

geometry, like a face, is significantly more difficult. Over the years, several texture mapping 

techniques have been created, but UV mapping is now the most common.  

UV Mapping allows us to have the capacity to connect points on the geometry and points on the 

texture. The texture is divided into a 2D grid using UV mapping, with the points (0,0) at the 

bottom left and (1,1) at the top right. The exact center of the picture will then be at the position 

(0.5, 0.5). Similar to this, every point in a geometry has a location in the mesh's 3D local space. 

Then, UV mapping is the process of tying 2D texture points to 3D geometry coordinates. In 

simpler words, texture mapping adds a 2D coordinate which represents a point within a texture. 

Each vertex has a texture coordinate associated that can be used to sample a color from the 

nearest texels (texture pixels) from that point. There are several techniques to sample from 

textures, and different ways of storing textures in memory. 

 

Figure 48: 3D Model and Texture UV Mapping. 

In Tesseract, each texture when is loaded generates a mipmap, which is an image that contains 

a sequence of the same image represented in different resolutions. It is used to reduce rendering 

artifacts and increase performance, by choosing the correct image resolution to apply as texture 

to a model based on the depth of the 3D object. Before having mipmaps, an image seen from 

afar would be sampled from the high resolution texture, which would show bigger jumps between 

the colors as the sampling would be done from points very far away from each other within the 

texture, after adding the mipmaps and starting using them, that ceased to happen because the 

mip or image slice chosen to sample from far distances was a lower resolution one, which means 

that colors would have been filtered together. 

Filtering is referred to the technique the sampler uses to fetch the color from the texture, there 

are several types: 
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• Linear filtering samples from an individual mipmap while it interpolates the two closest 

mipmaps that are relevant to the particular sample. 

• Bilinear filtering or blending takes the four texels that are nearest to the pixel center and 

sample them at the correct mipmap level l. Then, the colors are combined by using a 

weighted average which is dependent on the distance. 

• Trilinear does the same but combining the two closest mipmap levels using a linear 

interpolation after having done bilinear to each one of the mips. 

• Anisotropic improves the quality of distant objects that are viewed at an angle by not 

using only square but samples the texture in a non-square shape which tries to map the 

footprint of the pixel. 

In Tesseract, textures are sampled using bilinear filtering by default. 

 

Figure 49: Texture Mapping featuring Models with multiple meshes with different textures each. 
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5.4.8. Bump-Normal Mapping 

This kind of rendering effect allow us to create geometric complexity without adding more 

polygons. To implement it I needed to do some research: 

• How normal vectors are represented locally versus world normal information and how to 

transform them due to the need of the latter in order to implement this effect. This 

allowed me to expand my knowledge about vector coordinate reprojection. 

• Investigate about the different coordinate systems used in rendering and learning in 

depth about them. 

• How to calculate tangents and/or binormals and how they are represented in normal 

world space. 

• Understand how the algorithm works in order to implement it into my renderer. 

 

Figure 50: Normal,Tangent and Binormal Vectors over a curved surface point. 

After having these three components, we use each one of them to calculate the X,Y and Z values 

of the Bump Normal intensity, and then normalize it. This will grant us the perturbed normal for 

the point in the surface. 

Normal or Bump mapping is used to simulate bumps and creases on an object's surface. To do 

this, the object's surface normals are disturbed, and the perturbed normal is used for calculating 

illumination in our case, with the Phong algorithm. Despite the fact that the underlying object's 

surface is unaltered, the outcome is an apparent rough surface as opposed to a smooth one. 

Resulting in extra geometric complexity without adding polygons. 

Bump/Normal mapping is seen best from a closer distance, as we will see in the following figures. 
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Figure 51: Almost not recognizable Bump/Normal mapping due to being far from the model. 

 

Figure 52: Strong Looking Bump/Normal mapping when we get closer to the model. 



 
 

Tesseract: Realtime Rendering 3D Engine 
 

 

 - 52 - 

 

5.4.9. Shading Models 

Diffuse objects in Tesseract follow Lambert’s shading model 

for diffuse objects and Phong for specular, which relates the 

Incident ray of light with the normal vector from the point in 

the surface that is going to be lit or shaded. This is called the 

Lambert’s Cosine Law and it dictates that the amount of light 

that a surface receives is directly proportional to the angle 

between the surface normal and the light direction. 

Commonly known as Light Intensity (LI). 

 

So, to calculate the final illumination of the point for the diffuse in tesseract, as we implemented 

normal mapping, we take the processed Normal world vector and do a dot product between that 

and the Light Direction to get the light intensity, which must be in the 0 to 1 range. 

In Tesseract, I supported two types of light, Directional and Point Light. 

• Directional Lights, which mimics the appearance of light coming from an indefinitely far 

source. This makes it the best option for replicating the light of the sun since it guarantees 

that any shadows cast by this light will be parallel. 

• Point Lights, which emits light in all directions, just like a realistic light bulb would do. 

The light is emitted uniformly in all directions from a single point in space. This is done 

by including an attenuation factor into the light calculations and damping its intensity 

depending on how far the pixel is from the center of the light. 

Also, in Tesseract I use a small value for ambient light to simulate the light rays bounding 

everywhere, it is not the best way of simulating that, but for my use case it works well enough. 

As for GGX (which is the name of a microfacet distribution or Bidirectional Reflectance Distribution 

Function or BRDF), it is a shading model focused on metallic reflections on rough surfaces. The 

GGX shader tries to mimic the reflection point and falloff that generates having a glossiness and 

tail values for the GGX shader allowing to create more realistic metallic objects. 

 

Figure 54: GGX shading model vs Ward shading model applied to the same metallic object. 

Figure 53: Lambert's Cosine Law 
representation. 
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5.4.10. Shadow Mapping 

Shadow mapping is essentially the simplest way to get shadows projected from light sources in 

renderers that use rasterization, as raytracing calculates shadows differently. However, the thing 

is that it is not so simple, it involves several concepts that aren’t easy to understand unless you 

stop to think about them and perform several tests on your own to see how it works. 

The main algorithm to implement shadow mapping is simple, but it needs previous work done 

and working perfectly or else it won’t project the correct shadow or nothing at all. The problem 

is that shadow mapping is an unresolved problem and shadow reprojection by shadow mapping 

is one of the different ways of tackling the issue. 

For one directional light source all it takes is to set a depth texture of the scene from the light 

point of view taken by an orthographic projection, storing it and pass it onto the shader that will 

calculate the shadow along with some information for it to perform the reprojection and shading 

of the correct pixels. This is the list of things I needed to do in order to get it working: 

1. Initialize a texture for the depth map, which needs a specific format. 

2. Initialize a specific Sampler to sample from the depth texture. 

3. Render to the depth map texture from the light view. In order to do this, I needed to 

calculate a few things and set the render target to the depth texture:  

a. The Light position in World space. 

b. The Light position (LightVP) transformed with the matrix that resulted from the 

multiplication of the World matrix from the object, the Light’s view matrix and 

the Light’s orthographic Left Hand projection matrix. 

c. Pass all that information into the depth pixel shader which will calculate the depth 

value by dividing the LightVP variable z member by the w member and write that 

onto the texture. 

4. After the texture was correctly filled, to ensure this I implemented a texture viewport 

where I could see if the texture was correctly being calculated and stored, binding it into 

the shader that was going to calculate the shadow. 

5. To calculate the shadow, I implemented an algorithm called a depth test, which calculates 

the distance to the light as the distance from the point to the plane from where the light 

is projected orthographically. If this distance is greater than the depth for the light in that 

point, then that pixel is shadowed.  

Tesseract only implements hard shadows for now, but there are many different techniques to 

implement other types of shadows like soft shadows: 

• Percentage Closer Filtering (PCFS) Shadows which filter with a tighter proportion for 

shadow map sampling. The hardware does four depth comparisons and bilinearly 

interpolates the shadow value using the fractional portion of the texture coordinate. The 

shadow result is the percentage of the texel-size area that is in shadow. 

• Percentage Closer Soft Shadows (PCSS), this technique builds on top of the regular 

shadow mapping, it returns a float value for each pixel in the eye view indicating the 

amount of shadowing at each shaded point. PCSS is based on the observation that as 

the size of the PCF increases, the shadows are softer. To adjust the algorithm it follows 

three steps:  
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o The depths closest to the light source compared to the shadowed point known 

as the "receiver" are searched for in the shadow map and averaged. The size of 

the search area is determined by the size of the light and the distance between 

the receiver and the light source. 

o Calculation of the penumbra width which depends on the light size and receiver 

distances from the light by using parallel planes approximations. 

o Finally, we use regular PCF with the number of depth comparisons being 

proportional to the previous calculation of the penumbra. 

There is much room for improvement in shadow mapping, for instance, in DOOM 2016 to render 

shadows coming from multiple lights, they implemented a shadow map atlas system where 

distinct depth map is created and stored into one tile of a massive 8k×8k texture atlas for each 

light that casts a shadow. Not every depth map, however, is computed every frame: DOOM makes 

extensive use of the preceding frame's output and only regenerates the depth maps that require 

updating. It makes sense to leave a light's depth map untouched when it is static and just throws 

shadows on objects rather than needlessly recalculating it. But a new depth map has to be 

constructed whenever an opponent is moving under the light. 

The size of a depth map can change depending on how far the light source is from the camera, 

and newly created depth maps may or may not remain inside the same atlas tile.The depth map's 

static section may be cached in DOOM, which then computes just the dynamic meshes projection 

and composites the results. 

 

Figure 55: Shadow mapping debugging texture along with shadow mapping reprojection in Tesseract. 
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Figure 56: Shadow calculation Pixel Shader 
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6. Economic study 

In this chapter we will see the economic impact of the development of this kind of project; we 

will consider several factors: human, software licenses, salary, hardware, time... 

We will start by estimating how much time I invested in the project:  

Roughly 200 hours of work from which a 50% would be implementation of the different systems 

within Tesseract such as the Renderer, UI, profiling..., 15% to iteration over the systems, 15% 

to testing of these systems and finally 20% to investigation of different techniques. 

In the first case, if we were working for a company and were perceiving a salary, by using 

“Glassdoor”, which is a web page that hosts different information regarding jobs such as salary, 

opinion on various companies, interview processes... and several jobs offers for Rendering 

Engineers, we would find that the salaries vary between 18k€ and 28k€. 

I chose a medium salary of 23k€ for a Junior Rendering Engineer position. 

A month salary of 1.916,66€ each month will cost the company around 2.489,74€ each month. 

The approximate difference, 573€, will be paid by the company to the state for reasons such as 

social security and other taxes: unemployment (5.5%), common contingencies (23.6%), fogasa 

(0.2%), formation (0.6%)…, this averages the amount to around 15,56€ per hour which we will 

use to calculate the costs of development.  

 

Task 
Time in 

hours 

Economic cost per 

hour 

Implementation of the different systems within 

Tesseract 

100 1.556 € 

Iteration over the systems 30 466,8 € 

Testing of the systems 30 466,8 € 

Researching different techniques 40 622,4 € 

Total 200 3.112 € 
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We must also consider the cost of each component and material that was used to make this 

project and amortizing it by estimating the lifespan of each product.  

 Cost in € Project 

duration 

Cost per 

month 

Product 

lifespan 

Total 

High-end 

Desktop PC 

1600 € 1,25 22,22€ 6 years 27,78€ 

Laptop 1000 € 1,25 20,83€ 4 years 26,04€ 

Two 2K 

Monitors 

500 € 1,25 13,89€ 3 years 17,36€ 

Misc. 150 € 1,25 2,5€ 5 years 3,13€ 

Total 3250 €    74,31€ 

 

No special software license was needed for the development of this project. 

Then, the total cost can be calculated as follows: 

 Cost in € 

Development 3.112 € 

Materials used 74,31 € 

Total 3.186,31 € 

From a business perspective, this project can just be doable by bigger companies which have the 

funds to hire a bigger team of specialized people who knows its way around the development of 

this kind of software. Even with those funds available, it is still a dangerous business choice 

compared to choosing a pre-existing engine such as Unreal Engine, Godot, or Unity. However, it 

could be a good long run investment if the company does not want to pay extra cuts to the 

developers of the commercial engine or want to produce a proprietary engine that could license 

to other companies.  
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7. Results 

The objective of this project was to develop an understanding of the role of a Rendering engineer 

and game engine developer. As Tesseract has been built from scratch, it has been easy for me 

to iterate and experiment with different techniques and choose what I think fits best my purposes.  

As a Renderer is a very visual piece of software, it has been easy for me to analyze and understand 

what was working correctly and what not, to pour more time into those fields. 

The result of this work is a prototype engine focused on rendering, featuring some of the most 

important features for real-time/videogame development such as shadows, texturing, proper 3D 

transformations, Camera… 

Finally, Tesseract is a prototype, so it is not at the level of professional engines which have been 

in development since the early years of game development, however it is a good example of what 

a single person can accomplish in this period of time, and that small specific engines might be 

worth investing or investigating in order to expand knowledge.  

As a retrospective, Tesseract is capable of rendering 3D Models following certain lighting, shading 

model, using texture mapping and bump/normal mapping with illumination to provide extra 

geometric detail and traverse the world to look at them at different angles. Even if this is 

implemented properly there is much room for improvement, as there are more complex computer 

techniques that can enhance the look and performance of, and this prototype is still in an early 

but promising phase.  
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8. Conclusion and future work 

The Tesseract prototype built for this project has been both a research-intensive task and a 

challenge, as understanding complex techniques and concepts was needed to fulfill the objectives 

of this project, which were centered around the rendering aspect of it. I am satisfied with the 

work that has been done until now, even though there is room for improvement and adding new 

features.  

The work I present here successfully satisfies the objectives that were set by taking the first steps 

into game engine and rendering development, having allowed me to research more into these 

topics and tackling issues that otherwise I wouldn’t have faced. 

Tesseract is a prototype, and as such, there is still a lot of fields for improvement and research. 

There are some things left to do and polish within the implemented systems, as software 

development is an iterative process. Regarding adding more effects, implementing support for 

soft shadows and more advanced shading models would be the next step to take. It would be 

ideal to also start researching and implementing skinning, so an early 3D animation system could 

start taking form. 

Even though the base architecture for Tesseract is set and can be extended further by adding 

whole new features to it, doing a thorough look into it and polishing the existing systems to do 

their work better might be needed before start extending it.  
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10. Annexes 

 

10.1. Project Proposal 

0. Note: 

The project proposal has been modified due to the topics on basic 3D real-time rendering 

effects being more attractive towards the development of a small game engine renderer 

prototype rather than a voxel engine. 

1. Project’s Title 

Tesseract: A 3D Rendering Engine 

2. Description and Justification of the Topic 

The Project consists in the investigation e implementation of a game engine centered in 3D 

Rendering. Using a modern graphics API such as DirectX 11 and technologies like ImGUI for 

an immediate mode UI. The language to develop such a task will be C/C++ following a data 

transformation philosophy to make an efficient memory management and produce a good 

performance result. 

3. Project’s Objective 

a. Getting to know the state of the art in concepts such as Videogame Engine 

Architecture, 3D Rendering techniques and all that is derived from but in relation 

with the proposed project. 

b. Development of a prototype engine focused on the 3D Rendering aspect, using 

a modern hardware graphics API such as DirectX 11 and ImGUI as an Immediate 

mode UI Library. 

c. Design of a good architecture that allows for adding new features without taking 

a huge performance hit. 

d. Iteration and polishing of different rendering techniques and algorithms used in 

the engine to obtain a good result with visual quality. 

4. Methodology 

The methodology will be defined with the tutor in the reunions of the project. 

5. Task Planification 

The planning of the different tasks will be defined with the tutor in the reunions of the project. 

6. Additional Observations 

The tutor of the project will be Eduardo Jiménez Chapresto. 
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10.2. Meetings 

 

Date 26-11-2021 Reunion Online through Discord. 

Nº 1 Hour 10:00 AM Duration 20 minutes. 

1 Quick review on the final project. 

2 Mention of the most interesting topics regarding the final project: Rendering and 

effects. 

3 Brief talk about Rendering and effects and writing methodologies. 

4 Greenlight from tutor to start researching and implementing base systems. 

 

Date 09-12-2021 Reunion Online through Discord. 

Nº 2 Hour 10:00 AM Duration 24 minutes. 

1 Brief talk about the work. 

2 Extended talk about advancements in Tesseract. 

3 Showed different papers that I researched on Game Engines. 

4 Set what would be nice to have working first, such as Vertex Transformations. 

 

Date 26-11-2022 Reunion Online through Discord. 

Nº 3 Hour 10:30 AM Duration 30 minutes. 

1 Brief talk about the project. 

2 Showing of some functionality from the project. 

3 Quick look at code. 

4 Talk about how to improve and continue the research and implementation. 

 

Date 26-11-2022 Reunion Online through Discord. 

Nº 4 Hour 11:00 AM Duration 25 minutes. 

1 Quick talk about the project’s state. 

2 Comment on the chosen architecture for the project. 

3 Talk about the work that was done and the work that wasn’t yet done. 

4 Set of the following steps to follow next. 

 

Date 08-08-2022 Reunion Online through Discord. 

Nº 5 Hour 18:00 PM Duration 25 minutes. 

1 Quick chat about how Tesseract was going. 

2 Showing of different images from the project. 

3 Comment on what I had been implementing and readiness for showing. 

4 Comment on some technical related topics such as Shading models, lights, texturing... 

5 Learning and researching Bibliography sharing. 

6 Talk about this document review. 
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