

Universidad San Jorge

Escuela de Arquitectura y Tecnología

Grado en Diseño y Desarrollo de

Videojuegos

Proyecto Final

Comparing Object Oriented and Data Oriented

Programming for video games

Autor del proyecto: Daniel Muñoz Muñoz

Director del proyecto: Daniel Blasco

Zaragoza, 26 de junio de 2023

Comparing OOP and DOP for video games

Este trabajo constituye parte de mi candidatura para la obtención del

título de Graduado en Ingeniería Informática por la Universidad San
Jorge y no ha sido entregado previamente (o simultáneamente) para la

obtención de cualquier otro título.

Este documento es el resultado de mi propio trabajo, excepto donde de

otra manera esté indicado y referido.

Doy mi consentimiento para que se archive este trabajo en la biblioteca
universitaria de Universidad San Jorge, donde se puede facilitar su

consulta.

Firma Fecha

 26 de junio de 2023

Dedicatoria y Agradecimiento

Me gustaría agradecer a mi familia por apoyarme durate todos estos años de carrera, viéndome

en las mañas y en las buenas, por brindarme la oportunidad de estudiar lo que me apasiono

desde pequeño y ayudarme a descubrir mi pasión. Gracias a vosotros siento que este trabajo

tiene sentido más allá de mi formación.

También quiero agradecer a mis amigos/as por haber estado ahí cuando no sé pedía y por

haberme motivado a seguir adelante con apoyo y ánimos. En especial quiero agradecer a

Mercedes Gil (Merchi), su compañía en mi vida me ha dado fuerzas en los días que sentía que no

podía levantarme de la cama y siempre ha estado apoyándome sin pedir nada a cambio. Siento

que el trabajo, la dedicación y el amor que tengo por lo que hago no sería lo mismo sin su

presencia en mi vida.

Quiero particularmente darle las gracias a Daniel Blasco por confiar y apoyarme a lo largo de todo

el proyecto con su interés y conocimiento para que no solo este proyecto alcanzara su mejor

versión, sino también para que yo lo hiciese y aprendiese lo máximo posible.

Junto a él tengo que mencionar a África Domingo, mi tutora desde que entre a la universidad. Su

apoyo constante, su interés y ayuda me ha hecho sentir en casa desde que entre en la

universidad, haciendo sentirla de una forma que nunca había hecho.

Al resto de la Universidad San Jorge y en especial al equipo de investigación SVIT por brindarme

una oportunidad como nunca antes haciéndome sentir en casa y empujándome para dar lo mejor

de mí cada día que pasa

Gracias a todos por haberme ayudado a ser quien soy ahora.

Comparing OOP and DOP for video games
Tabla de Contenido

Table of contents

Abstract .. 1

Resumen .. 2

1. Introducción ... 3

1.1. Object Oriented Design for video games .. 3

1.2. Data-Oriented Designs for video games ... 4

1.3. Motivation ... 5

1.4. Industrial application: Introducing Bullet Hells ... 7

2. State of Art ... 9

2.1. Overview of Object-Oriented Design (OOD) ... 9

2.1.1. Definition and principles of OOD ... 10

2.1.2. Application of OOD in game development ... 11

2.1.3. Advantages and limitations of OOD in game projects ... 12

2.2. Introduction to Data-Oriented Design (DOD) ... 13

2.2.1. Definition and core principles of DOD ... 14

2.2.2. Contrasting DOD with OOD in design philosophy and approach 15

2.2.3. Case studies showcasing implementations of DOD in game development 16

2.3. Comparative Analysis of OOD and DOD .. 17

2.3.1. Key differences between OOD and DOD from a learning point of view 17

2.3.2. Evaluation of Strengths and Weaknesses in the game development context 18

2.4. Industry Practices and Trends .. 18

2.4.1. Use of OOD and DOD in the game development industry ... 19

2.4.2. Case study: Unity's efforts to develop DOTS ... 20

2.4.3. Comparing the learning curve of OOD and DOD .. 22

2.4.4. Discussion of emerging trends and hybrid approaches combining OOD and DOD 22

2.5. The current state of the Bullet Hell genre ... 23

3. Objectives ... 25

4. Methodology ... 26

4.1. Development methodology ... 26

4.2. Evaluation methodology ... 28

4.2.1. Research Questions ... 28

Comparing OOP and DOP for video games
Tabla de Contenido

4.2.2. Metrics ... 29

4.2.3. Data Collection .. 29

4.2.4. Data Analysis .. 29

4.3. Methodology choice .. 29

4.4. Working routines ... 31

5. Description and Implementation ... 32

5.1. Game description and mechanics ... 32

5.2. OOD implementation ... 33

5.2.1. Implementing the code .. 34

5.2.2. Interactions and pipeline ... 35

5.2.3. Script division.. 36

5.2.4. In-Editor view ... 41

5.3. DOD implementation ... 43

5.3.1. Understanding the framework .. 43

5.3.2. Creating the data worksheet .. 45

5.3.3. Implementing the code .. 47

5.3.4. Pipeline... 47

5.3.5. Script division.. 49

5.3.6. In-Editor view ... 55

6. Economic Study .. 59

6.1. Cost analysis ... 59

7. Results .. 61

7.1. Prototype review ... 61

7.2. Comparative analysis .. 64

7.2.1. Bullet stress test.. 64

7.2.2. Enemy stress test .. 67

8. Validation Threats .. 69

9. Conclusions .. 71

9.1. Future Work .. 72

9.2. Personal Learnings .. 74

10. References .. 75

11. Appendix... 82

Comparing OOP and DOP for video games
Tabla de Contenido

11.1. Appendix A .. 82

11.1.1. Datasets .. 82

11.2. Appendix B .. 83

11.2.1. Project files and builds ... 83

12. Annexes: ... 84

12.1. Annex A: Propuesta de proyecto ... 84

12.2. Annex B: Meetings record ... 85

12.3. Annex C ... 86

12.3.1. Data worksheet ... 86

12.4. Annex D ... 87

12.4.1. Time description per script ... 87

12.5. Annex E ... 88

12.5.1. Gallery .. 88

12.6. Annex F.. 90

12.6.1. Data Collection: Unity’s profiler ... 90

Comparing OOP and DOP for video games
Tabla de Figuras

Table of Figures

Figure 1: Breakdown of the video game market by platform [3]... 3

Figure 2: Representation of a complex world [11] ... 4

Figure 3: Abstract representation [11] .. 4

Figure 4: DOTS Framework and Packages [29] ... 5

Figure 5: Summary of DOD usage over time ... 7

Figure 6: DoDonPachi Screenshot [37] ... 8

Figure 7: Touhou Project: Ancient New Moon [36] .. 8

Figure 8: OOP representation of data distribution [60] .. 13

Figure 9: Performance comparison depending on cache misses [14] 15

Figure 10: Performance comparison depending on data status [14] 15

Figure 11: DOD representation of data distribution [60] .. 16

Figure 12: ECS infographic [23] ... 20

Figure 13: Burst view of assembly code [89] .. 21

Figure 14: Fantastic Poetry Festival, created with Danmokou [96] 24

Figure 15: Scheme application of the GQM methodology ... 30

Figure 16: Structure for the Object Oriented Structure .. 34

Figure 17: Bullet relationships ... 36

Figure 18: Player relationships ... 38

Figure 19: Enemy relationships .. 39

Figure 20: Definition & Generic relationships .. 40

Figure 21: OOD Hierarchy view ... 41

Figure 22: Enemy manager parameters ... 41

Figure 23: Player manager parameters .. 41

Figure 24: Bullet parameters ... 42

Figure 25: General definition of ECS [101] ... 43

Figure 26: Internal definition of an entity [101] .. 43

Figure 27: Entity grouping [101] .. 44

Figure 28: Archetype definition inside a world [101] ... 44

Figure 29: Structure for the Data Oriented Structure ... 47

Figure 30: Job branching dependencies [103] .. 48

Figure 31: Bullets processing relationship ... 49

Figure 32: Bullet authoring script ... 50

Figure 33: Player processing relationship.. 51

Figure 34: Enemy processing relationship... 52

file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710723
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710724
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710725
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710726
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710727
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710728
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710729
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710730
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710731
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710732
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710733
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710734
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710735
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710736
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710737
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710738
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710739
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710740
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710741
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710742
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710743
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710744
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710745
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710746
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710747
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710748
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710749
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710750
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710751
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710752
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710753
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710754
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710755
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710756

Comparing OOP and DOP for video games
Tabla de Figuras

Figure 35: Definition relationship ... 53

Figure 36: Authoring components .. 55

Figure 37: Basic Unity hierarchy .. 55

Figure 38: Configuration authoring .. 55

Figure 39: Entities Hierarchy window ... 56

Figure 40: Components window and Pierce inspector .. 56

Figure 41: System window .. 58

Figure 42: Archetype window and Bullet inspector .. 57

Figure 43: OOD Prototype look .. 61

Figure 44: Showcasing of some bullet patterns heading for the enemies 62

Figure 45: Comparison of players. OOD on the left, DOD on the right 62

Figure 46: OOD runtime performance .. 63

Figure 47: DOD runtime performance .. 63

Figure 48: Frames per second as the number of bullets increases .. 64

Figure 49: ms as the number of bullets increases for managed scripts 64

Figure 50: ms as the number of bullets increases for the whole frame 65

Figure 51: ms as the number of bullets increases for the managed scripts with new version . 65

Figure 52: Final results for bullets and in-game times ... 66

Figure 53: MB of data allocated as the number of bullets increases 66

Figure 54: ms change over managed scripts as enemies increase .. 67

Figure 55: ms change over the full frame as enemies increase .. 67

Figure 56: MB of data allocated as the number of enemies increases 68

file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710757
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710758
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710759
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710760
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710761
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710762
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710763
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710764
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710765
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710766
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710767
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710770
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710771
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710772
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710773
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710774
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710775
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710776
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710777
file:///C:/Users/danie/OneDrive/Documents/4year/TFG/Memoria_C4_A.docx%23_Toc138710778

Comparing OOP and DOP for video games
Tabla de Tablas

Table of Tables

Table 1: Data worksheet for bullet entities .. 45

Table 2: Data worksheet for player entities ... 45

Table 3: Data worksheet for enemy entities .. 45

Table 4: Data worksheet component transformations .. 46

Table 5: Costs of the project by hours .. 59

Comparing OOP and DOP for video games

Comparing OOP and DOP for video games
Abstract

 - 1 -

Abstract

Object-Oriented Programming (OOP) and Data-Oriented Programming (DOP) are two prominent

design paradigms widely used in software development, including video game development. This

research aims to compare these paradigms specifically in the context of the video game

environment.

OOP focuses on modeling systems as a collection of interacting objects, encapsulating data and

behavior within classes. It promotes modularity, code reusability, and maintainability, making it

suitable for various aspects of game development. In video games, OOP facilitates the creation

of game entities such as characters, items, and environments and supports features like

inheritance and polymorphism to manage complexity and enable efficient game object

interactions.

DOP, on the other hand, emphasizes organizing and optimizing data for efficient processing. It

seeks to maximize data locality, minimize cache misses, and exploit parallelism for performance

gains. DOP techniques are particularly beneficial in in-game scenarios where data-oriented

optimizations such as physics simulations, AI processing, and rendering can significantly improve

performance.

Through this comparative analysis, the research aims to provide insights into the trade-offs and

suitability of OOP and DOP in different aspects of video game development. By understanding

their relative merits, developers can make informed decisions regarding the choice of design

paradigm based on the specific requirements and constraints of their game projects.

This study focuses on a case study representing a characteristic idiosyncrasy of a video game to

conduct comparisons by developing a prototype video game using both OOP and DOP

approaches.

The results show that projects, where performance is essential, can benefit significantly from

DOD, while it does not impact small or medium-sized projects as much. The current literature

and educational offer are more oriented toward OOD training than DOD. Therefore, the mass

adoption of DOD by the community will depend on whether said balance changes due to its

successful use in industrial products and research works, along with which this research tries to

contribute.

Keywords

Design paradigms, data-oriented design, object-oriented design, performance optimization, game

engine architecture, game performance, data locality, cache optimization, parallel processing,

code optimization, code maintainability, and code reusability.

Comparing OOP and DOP for video games
Resumen

 - 2 -

Resumen

La Programación Orientada a Objetos (OOP) y la Programación Orientada a Datos (DOP) son dos

paradigmas de diseño prominentes ampliamente utilizados en el desarrollo de software, incluido

el desarrollo de videojuegos.

OOP se enfoca en modelar sistemas como una colección de objetos que interactúan,

encapsulando datos y comportamiento dentro de clases. Promueve la modularidad, la reutilización

del código y la mantenibilidad. En el desarrollo de videojuegos, OOP facilita la creación de

entidades de juegos, como personajes, elementos y entornos, y admite funciones como la

herencia y el polimorfismo para administrar la complejidad y permitir interacciones eficientes con

los objetos del juego.

DOP, por otro lado, enfatiza la organización y optimización de datos para un procesamiento

eficiente. Busca maximizar la localidad de los datos, minimizar las fallas de caché y explotar el

paralelismo para mejorar el rendimiento. En los videojuegos, las técnicas DOP son beneficiosas

para escenarios donde las optimizaciones orientadas a datos pueden mejorar significativamente

el rendimiento, como simulaciones físicas, procesamiento de IA y renderizado.

A través de este análisis comparativo, el proyecto tiene como objetivo proporcionar información

sobre los beneficios de OOP y DOP en diferentes aspectos del desarrollo de videojuegos. Al

comprender sus diversos usos y beneficios, los desarrolladores pueden tomar decisiones

informadas con respecto a que paradigma de diseño usar en función de los requisitos y

limitaciones específicos de sus videojuegos.

Este estudio se centra en un caso de estudio que representa la idiosincrasia caracteristica de un

videojuego para llevar a cabo las comparaciones mediante el desarrollo de un prototipo de

videojuego utilizando ambos paradigmas.

Los resultados muestran que los proyectos en los que el rendimiento es esencial pueden

beneficiarse notablemente de DOD, mientras que no tiene tanto impacto en proyectos de tamaño

medio o pequeño. La literatura y oferta educativa actual están mas orientadas a la formación en

OOD frente a DOD, por ello, la adopción masica de DOD por la comunidad dependerá de que

dicho equilibrio cambie debido a su uso exitoso en productos industriales y trabajos de

investigación, a lo cual el presente trabajo trata de contribuir.

Palabras Clave

Paradigmas de diseño, diseño orientado a datos, diseño orientado a objetos, mejora del

rendimiento, arquitectura del motor de juego, rendimiento del juego, estructuración de datos,

optimización de caché, paralelización, optimización de código, mantenibilidad de código,

reusabilidad de código.

Comparing OOP and DOP for video games
Introducción

 - 3 -

1. Introducción

The video game industry has witnessed remarkable growth and innovation in recent years, with

games becoming increasingly complex and immersive [1] [2] [3]. This rapid evolution has brought

new challenges for game designers and developers, particularly in performance optimization,

memory management, and scalability, requiring research to find the optimal patterns for the task

[4] [5].

This rapid evolution has only gotten more attention recently with the uprise in mobile games and

their user popularity in the overall gaming market (Figure 1). These demands have pushed for

better hardware, but it does come with an upgrading cost that not all users can afford, which

demands a development apart from just hardware [6] [7] [8].

This has pushed some game engines to search for other solutions to improve performance in the

general picture, from indie developers to AAA developers. While sharing the same problem, the

two most significant engines [9] have had different approaches to easing them. Unreal Engine

has opted for a new system called "Nanite," which eases the work on the GPU and CPU [10]. On

the other hand, Unity has not officially launched anything yet but has been experimenting since

2018 with a complete change of coding paradigm from its engine to the programmers using it.

1.1. Object Oriented Design for video games

Object-oriented programmers can recreate complex worlds within video games through the

power of abstraction (Figure 2). By representing real-world entities and concepts as classes

(objects) in their code, they can encapsulate the characteristics, behaviors, and relationships of

various elements that make up a game environment without getting into the intrinsics of how

Figure 1: Breakdown of the video game market by platform [3]

Comparing OOP and DOP for video games
Introducción

 - 4 -

things work or are managed (Figure

3). For example, they can define

characters, objects, environments, and

interactions classes, allowing them to

model the virtual world with high

fidelity. This abstraction enables

programmers to organize and manage

the game's components efficiently, as

each class encapsulates its logic and

data, promoting modularity and code

reusability. [11]

Unity's change is promoted by most

games being designed with Object

Orientation in mind described by

Nystrom R. [12]. A common reason for

this is that its use is easy to maintain

and find by the developers, thus

making it cheaper and faster to

develop.

Object Oriented Design (OOD) standard design patterns apply to adaptive games with templates

like Command, Observer, Flyweight, and Singletons, which have been used to help with many

video game tasks [13]. While these patterns are both valuable and maintainable, there are more

optimal options for performance. An example is how Singletons help with readability and usability

along a bigger scheme. However, it does not use memory accordingly as it usually must jump

through the caches (short time memory collections of growing size) to reach it, leading to lower

performances.

1.2. Data-Oriented Designs for video games

The origin of Data-Oriented Design (DOD) comes from targeting data for operations [14] [15]

[16] with a focus on data locality (accessing data as fast as possible) and parallel computing [14]

[17] [18] to improve the performance of those operations.

The main application of DOD has been in real-time systems, as they require stable performance

under limited resources [19]. One of the key uses has been on video recordings as it must quickly

process data and store it without losing frames, as recovering it would delay the process and the

Figure 2: Representation of a complex world [11]

Figure 3: Abstract representation [11]

Comparing OOP and DOP for video games
Introducción

 - 5 -

recording. While hardware improvements have helped, DOD has proven to have a consistent

performance gain over OOP as they have a lower chance of page skipping (event at which a given

instruction or variable is not on the currently available memory section, so we need to go to main

memory to retrieve it), which would lead to freezes between memory and disk [20] [21].

DOD has not been used in the video games industry as it is believed to require much effort from

developers [22]; Unity has pushed for it since 2018 with their new framework called DOTS

(Figure 4), which uses ECS, a programming paradigm based on DOD [23]. This system has been

used for a few prototype games [24] [25] [26] [27] [28] [29], and some bigger ones are near

production ready [30]. However, the technology is mainly targeted to processor-intensive games

with lots of rendering, physics, and many calculations.

In reality, most indie teams do not develop using ECS from the beginning [31] due to a lack of

resources and an initial understanding of the system and its uses. However, as the project and

team grow, the need to optimize a fully built game may arise with its problems [32].

1.3. Motivation

DOD has emerged as an alternative approach to OOD in game development, particularly within

the Unity engine [33]. This research explores the motivations behind considering DOD as a

potential paradigm shift and why it is relevant and exciting within the context of Unity

Figure 4: DOTS Framework and Packages [29]

Comparing OOP and DOP for video games
Introducción

 - 6 -

development. The following points outline the problematic aspects of OOD and the reasons why

investigating DOD is essential:

• Performance Optimization:

One of the primary motivations for exploring DOD in Unity development is the need for

performance optimization. With its emphasis on encapsulation and complex object

hierarchies, OOD can sometimes lead to memory constraints. Game developers constantly

strive for smoother frame rates, reduced loading times, and better overall performance. DOD,

with its focus on data locality and cache coherence, offers the potential for improved

performance and reduced memory consumption. It is essential to investigate DOD in this

context to understand its potential benefits and trade-offs in performance optimization as a

possible solution.

• Scalability and Multithreading:

As game development projects grow in complexity, scalability becomes a crucial

consideration. With its heavy reliance on inheritance and polymorphism, OOD can pose

challenges when distributing work across multiple threads and utilizing modern hardware

architectures effectively. DOD provides a data-driven approach that lends itself naturally to

parallelization and multithreading. Exploring DOD within Unity can show how it enables better

scalability and concurrency management, potentially unlocking performance gains on multi-

core processors.

• Memory Management:

Efficient memory management is paramount in game development, especially in resource-

constrained environments such as mobile devices or consoles. OOD's emphasis on

encapsulation and object relationships can result in fragmentation and increased memory

overhead. On the other hand, DOD promotes a more direct and controllable approach to

memory management, leading to improved memory utilization and reduced overhead.

Investigating DOD in Unity can help identify scenarios where memory management can be

optimized by leveraging data-oriented principles.

• Architectural Flexibility:

While widely adopted and proven effective in many scenarios, OOD may only sometimes

provide the desired architectural flexibility for specific games or performance-critical systems.

DOD offers an alternative mindset and methodology for structuring game code, allowing for

more fine-grained control over data layout and processing. This can also be exported into the

netcoding section. Unity has officially said they will not work for the current OOD netcoding

packages to be performant but will focus on creating and refining the DOD net coding

package [34].

• Paradigm Exploration:

Comparing OOP and DOP for video games
Introducción

 - 7 -

Game development is an ever-evolving field, and exploring alternative design paradigms is

essential to drive innovation and push the boundaries of what is possible. While OOD has

been the dominant paradigm for game development for many years, DOD has gained traction

as a viable alternative. Investigating DOD in Unity allows one to analyze its strengths and

weaknesses critically, compare it against OOD, and contribute to the broader discourse on

game development methodologies.

Figure 5 summarizes the general context of this research from the Data Oriented Design

perspective and how it has been improved and built.

1.4. Industrial application: Introducing Bullet Hells

Bullet Hell games, also known as danmaku or manic shooters, have captivated players with their

intense and visually striking gameplay experiences. These games belong to the shoot 'em up

genre and are characterized by their overwhelming displays of bullets and projectiles on the

screen, creating a challenging and exhilarating gameplay environment [35].

In a Bullet Hell game, players navigate their ship or character through intricate patterns of enemy

bullets, dodging and weaving their way to survival. The screen becomes a symphony of

projectiles, requiring precise movements and quick reflexes. The sheer volume of bullets creates

a sense of tension and spectacle, demanding intense concentration and strategic positioning. This

complexity is usually simplified by reducing the dimensions of movement to 2D while giving the

movement impressions by scrolling, an isometric perspective, or putting the player in rails to

simplify movement even more [35]. [36] [37]

Figure 5: Summary of DOD usage over time

Comparing OOP and DOP for video games
Introducción

 - 8 -

The origins of Bullet Hell games can be traced back to the early days of arcade gaming, with titles

such as "Touhou Project" (Figure 7) and "DoDonPachi" (Figure 6) gaining popularity in the

1990s and early 2000s and staying popular until the present with "Touhou Project" having

launched 30 games as of 2022 [38]. These games pushed the boundaries of visual effects and

bullet patterns, setting the foundation for the genre's distinctive style.

One of the defining features of Bullet Hell games is their emphasis on pattern recognition and

memorization. Players must learn intricate bullet patterns and enemy behaviors to devise effective

strategies for survival. It is a genre that rewards practice, perseverance, and mastery, providing

a deeply satisfying sense of accomplishment when navigating through a barrage of bullets

unscathed.

Over the years, Bullet Hell games have evolved and diversified over the years, incorporating

various themes, art styles, and gameplay mechanics. From traditional spaceship shooters to

fantastical worlds with magical characters, the genre has expanded to offer players a wide range

of experiences. Furthermore, Bullet Hell games have found a home on various platforms, including

arcade machines, consoles, and PC, attracting a dedicated community of enthusiasts.

The popularity of Bullet Hell games stems from their unique blend of high-intensity action, visual

spectacle, and strategic gameplay. These games provide an adrenaline-pumping challenge that

pushes players to their limits, offering a thrilling and immersive experience that keeps them

returning for more.

Figure 6: DoDonPachi Screenshot
[37]

Figure 7: Touhou Project: Ancient New
Moon [36]

Comparing OOP and DOP for video games
State of Art

 - 9 -

2. State of Art

Software design is crucial in developing modern games, providing the foundation for creating

robust, maintainable, and efficient game systems. Over the years, various design methodologies

and paradigms have emerged, each offering a unique approach to structuring code and managing

complexity. Among these methodologies, Object-Oriented Design (OOD) and Data-Oriented

Design (DOD) have garnered significant attention in the game development industry. This section

explores software design's state of the art, focusing on OOD and its application in game

development.

2.1. Overview of Object-Oriented Design (OOD)

Object-Oriented Design (OOD) is a popular software design paradigm that provides a structured

approach to designing and organizing code. It is widely used in various domains, including game

development, due to its ability to manage complexity, promote code reuse, and enhance

maintainability.

The creation of OOD is not a specific moment in time, as concepts similar to objects appeared as

early as the '60s. However, the first mass appearance was with the creation of Alan Kay, the

Smalltalk programming language entirely based on objects [39] [40]. Since then, OOD has gained

significant popularity, and lots of programming languages have developed the idea and built onto

them as their core foundations [41], like Java; developed to support OOD [42] [43], C++, and

C#; both created around the concepts of OOP [44] [45] [46] and more recently Python; creating

as a versatile tool to support multiple paradigms [47].

The fundamental building blocks in OOD are objects, which encapsulate data (attributes) and

behavior (methods). Objects are instances of classes that define their characteristic structure and

behavior. OOD follows several principles to create modular and extensible systems, such as

encapsulation, inheritance, and polymorphism.

Understanding OOD is essential for aspiring game developers and software engineers, as it forms

the foundation for creating well-structured and maintainable codebases. By leveraging the

principles of OOD, developers can design flexible and scalable systems, leading to efficient game

development processes and high-quality games.

Comparing OOP and DOP for video games
State of Art

 - 10 -

2.1.1. Definition and principles of OOD

OOD is a software design paradigm that focuses on organizing and structuring code around

objects, which are instances of classes [48]. Unlike procedural or functional programming, which

primarily revolves around functions and data, OOD emphasizes data encapsulation and behavior

within objects. This approach brings several principles that govern OOD and provide a foundation

for designing robust and flexible software systems. The core principles of OOD include the

following principles:

− Encapsulation: Encapsulation is the principle of bundling data and the methods that operate

on that data into a single unit called an object. It allows for data hiding, protecting the internal

gears of an object from direct external access. For example, in a banking application, a

BankAccount class could encapsulate attributes like balance and methods like deposit and

withdraw to ensure only selected access and manipulation of the data [48] [49].

− Inheritance: Inheritance enables the creation of a class hierarchy, where subclasses inherit

properties and behaviors from a superclass. This promotes code reuse and allows for

specialization and generalization of objects. For instance, in a game development scenario, a

Character class could serve as a superclass, and subclasses like PlayerCharacter and

EnemyCharacter could inherit common attributes and methods while adding specific

functionalities [48] [49] [50].

− Polymorphism: Polymorphism refers to the ability of objects of different classes to be

treated as objects of a common superclass. This principle allows for code flexibility and

modularity. A classic example is a Shape superclass with various subclasses like Circle,

Rectangle, and Triangle. Even though each shape has its unique implementation of a

calculateArea method, polymorphism allows them to be handled uniformly, simplifying code

maintenance and extensibility [48] [51].

− Abstraction: Abstraction involves identifying and capturing the essential characteristics of

an object while ignoring the irrelevant details. It allows developers to create generalized

models that can be reused across different contexts. By abstracting common behaviors and

attributes into base classes or interfaces, OOD facilitates code reuse and promotes a higher

conceptual understanding [48] [50].

Comparing OOP and DOP for video games
State of Art

 - 11 -

− Association and Composition: Association represents the relationship between objects,

where one object is connected to another. Composition is a type of association that implies

a stronger relationship, where an object is composed of other objects. These relationships

enable the construction of complex systems by combining smaller, independent objects into

larger structures. For example, in a graphical user interface (GUI), a Window object may have

an association with multiple Button objects, and the composition of a Panel object consists

of several other GUI components [48] [49] [50].

Object-Oriented Design provides a structured and modular approach to software development by

adhering to these principles. Languages like UML have helped provide the tools necessary for

modeling with these principles in mind making it a "standard" language to work with in

conjunction [50]. It promotes code reuse, maintainability, and flexibility, enabling developers to

build complex systems efficiently [52].

Besides that, Object Oriented Programming has been a topic in the White Paper on Informatics

[53], which mentions it as a needed subject and one of the critical concepts for all engineers in

the field.

2.1.2. Application of OOD in game development

OOD in game development is widespread due to the modular and flexible nature of OOD, which

suits the complexity of games. OOD is commonly employed in the following key areas of game

development:

Various entities, such as characters, enemies, items, and obstacles, play crucial roles in game

development. OOD allows developers to represent these entities as objects, encapsulating their

properties (e.g., position, health, speed) and behaviors (e.g., movement, interaction) within

respective classes. This approach enables easier management, reusability, and extensibility of

game entities. For example, a PlayerCharacter class, an Enemy class, and an Item class can be

created in a platformer game, each with specific attributes and behaviors [54].

OOD is instrumental in implementing game mechanics, which define the rules and interactions

within a game. By employing OOD, developers can represent game mechanics as a collection of

interrelated objects and classes. This modular design facilitates code organization, maintainability,

and the ability to iterate and expand upon game mechanics. For instance, in a puzzle game, a

Comparing OOP and DOP for video games
State of Art

 - 12 -

Grid class, a Tile class, and a Solver class can be designed, where each class contributes to the

game mechanics, such as tile movement and puzzle-solving algorithms [12].

Games often incorporate various systems, such as collision detection, input handling, and audio

management. OOD allows developers to design these systems as separate, reusable components.

Each system can be encapsulated within its class, ensuring clear responsibilities and promoting

code modularity. For example, a game's collision detection system can be implemented using a

CollisionManager class, which handles the detection and resolution of collisions between multiple

game objects. This modular approach enables more manageable maintenance and extensibility

of game systems [12] [55].

By leveraging the principles of OOD in game development, developers can create well-structured

and scalable game systems. OOD promotes code organization, reusability, and maintainability,

enabling efficient development and evolution of games throughout their lifecycle.

2.1.3. Advantages and limitations of OOD in game projects

OOD offers distinct advantages when applied to game projects and certain limitations developers

should consider when using it.

OOD facilitates extensibility, allowing game projects to evolve and incorporate new features.

Through inheritance and polymorphism, developers can extend existing classes or create new

subclasses to add unique functionality without modifying the game's core structure. This flexibility

is valuable in the iterative process of game development. For example, introducing a new power-

up in a game can be achieved by creating a subclass of an existing PowerUp class, inheriting its

common properties, and adding specific behavior [12].

However, OOD does have its limitations in game projects. One such limitation is the potential

performance overhead associated with dynamic dispatch. While polymorphism provides flexibility

but can incur a slight performance cost compared to static dispatch in languages with less

dynamic features. Game developers need to consider this trade-off and optimize critical sections

of the code when performance is a top priority [56] [57] [58]. Another aspect to remember is the

data dispersity as we let the compiler manage it, ending with various structures over the memory.

Comparing OOP and DOP for video games
State of Art

 - 13 -

An example is how a sphere’s color may be handled in memory. Every sphere asks for its color

on memory; if it is a green sphere, we set its position (Figure 8). [59]

Additionally, the learning curve for developers new to OOD can pose a challenge for game

projects. While acquiring a basic knowledge of OOD happens relatively fast and is taught as part

of the informatic program [53], acquiring proficiency in OOD principles may take time, especially

to get the patterns that will provide the best performance. Training and mentorship programs

can mitigate this challenge and ensure the effective adoption of OOD practices within the game

development team. However, that also takes both time and the personnel needed to teach,

requiring extra effort or not focusing on it with possible future consequences [60] [61].

By considering the advantages and limitations of OOD in game projects, developers can leverage

its benefits while addressing potential challenges. Properly implementing OOD principles can lead

to well-structured, reusable, and maintainable codebases, enhancing the overall quality and

efficiency of game development.

2.2. Introduction to Data-Oriented Design (DOD)

Data-Oriented Design (DOD) is an alternative software design approach that optimizes data

structures and memory access patterns for improved performance. Unlike OOD, which

emphasizes encapsulation and object relationships, DOD prioritizes efficient data representation

and processing.

DOD does not have a specific creator or designer associated with it in the same way as OOD.

Instead, DOD has emerged as a design approach driven by the need for performance optimization

in various domains promoted by some proponents like Scott Meyers [18], Jonathan Blow [62],

Figure 8: OOP representation of data distribution [59]

Comparing OOP and DOP for video games
State of Art

 - 14 -

Noel Llopis [63] [17], and Mike Acton [64] who has been in the Unity team to develop the ECS

system [65] which we will cover in the later sections.

While DOD is not tied to any specific programming language, there are programming languages

and frameworks that have grown to have an affinity for DOD principles and facilitate its

implementation, like C and C++, since they are low-level languages that provide both fine-grained

controls over the memory [66] [67] and SIMD-enabled (Single Instruction, Multiple Data)

instructions which is a technology that allows parallel execution of the same operation on multiple

data elements [68] [69] [70].

2.2.1. Definition and core principles of DOD

DOD is a paradigm that emphasizes organizing and processing data efficiently to achieve high

performance. The core principles of DOD include:

− Data Layout Optimization: DOD advocates optimizing data layouts to improve memory

access patterns. DOD aims to minimize cache misses and maximize data locality by arranging

data contiguously and cache-friendly. This principle often involves using arrays of structures

(AoS) or structures of arrays (SoA) representations for improved data access and parallel

processing [14] [71] [72].

− Data-Driven Design: DOD encourages designing systems and algorithms based on the

properties and characteristics of the data being processed. Instead of relying on intricate

object hierarchies and polymorphism, DOD focuses on designing algorithms that operate

efficiently on large data sets. This principle uses data properties to achieve performance

gains, such as SIMD (Single Instruction, Multiple Data) optimizations [14] [71] [73].

− Cache Awareness: DOD seeks to maximize cache utilization by minimizing data

dependencies and improving data access patterns. By considering the memory hierarchy and

optimizing data access accordingly, DOD aims to reduce cache stalls and improve overall

performance. This principle often involves batching operations and organizing data to ensure

cache coherence [14] [18] [72] [74]. This improvement can have considerable consequences

in process time as, for example, caching on-demand calculations on an array check

(representing a map check) has an improvement by a factor of 4 while, if we could cache the

total result, the improvement is by a factor of 11 (Figure 9).

Comparing OOP and DOP for video games
State of Art

 - 15 -

A similar example comes from data sorting and how having it sorted can significantly improve

performance (Figure 10), which shows an improvement by a factor of 6.

2.2.2. Contrasting DOD with OOD in design philosophy and approach

OOD and DOD diverge in their design philosophies and approaches. While OOD focuses on

encapsulating data and behavior within objects and emphasizes the relationships between

objects, DOD prioritizes efficient data representation, processing, and alignment on the cache

[60] [75]

Objects are the central building blocks in OOD, and their interactions drive system behavior. OOD

encourages abstraction, inheritance, and polymorphism for flexibility and code reuse. In contrast,

DOD places a greater emphasis on data representation and processing efficiency. It favors a more

direct and data-centric approach, optimizing data layouts and algorithms for improved

performance. It is necessary for a few specific sectors where stability, performance, and lots of

memory or computation power are required [76] [77].

As we saw with OOD, the example with the spheres would look drastically different in DOD, even

if the bases are the same. The structure is layout in a way that lets easy access to properties like

color and position, packed into buffers to reduce the number of cache misses (Figure 11).

Figure 10: Performance comparison depending on cache misses [14]

Figure 9: Performance comparison depending on data status [14]

Comparing OOP and DOP for video games
State of Art

 - 16 -

OOD encourages designing systems based on object hierarchies and encapsulated behaviors,

promoting code modularity and extensibility. On the other hand, DOD focuses on the properties

and characteristics of the data, designing algorithms that operate efficiently on large datasets.

DOD's approach can lead to performance gains in scenarios where data processing is the primary

concern, such as game physics simulations, rendering systems, and easy-to-parallelize systems

[78].

2.2.3. Case studies showcasing implementations of DOD in game development

DOD has found successful implementations in various areas of game development, showcasing

its performance benefits. Here are some examples and case studies:

− Game Physics Simulation: DOD has been effectively applied to game physics simulations,

where efficient data representation and processing are critical. Physics engines can achieve

significant performance gains by optimizing data layouts and leveraging SIMD optimizations.

For example, the Bullet Physics library utilized DOD principles to improve collision detection

and rigid body dynamics calculations [79] [80].

− Entity-Component Systems: DOD has been applied in the design of entity-component

systems (ECS), an architecture for game development. ECS separates data and behavior,

treating game entities as compositions of components. By utilizing DOD principles, ECS

architectures can achieve efficient data representation and processing, improving

performance. The implementation of DOD in the Unity game engine's ECS framework is an

example of its successful application in game development [24] [81].

− Cache Locality: DOD emphasizes cache locality, which refers to organizing data to maximize

its proximity to the processor and minimize cache misses (when data is unavailable and gets

requested to the nearest cache memory). In modern processors, data is stored in a

hierarchical cache system, with faster and smaller caches closer to the CPU [18]. Cache

Figure 11: DOD representation of data distribution [59]

Comparing OOP and DOP for video games
State of Art

 - 17 -

locality aims to optimize data access so that frequently accessed data is stored in the closest

caches, reducing the need to fetch data from slower main memory. By aligning data in

memory and utilizing cache-conscious data layouts, DOD can significantly improve

performance by exploiting the cache usages [74].

2.3. Comparative Analysis of OOD and DOD

In software design, OOD and DOD represent two distinct approaches, each with its principles and

philosophies. This section provides a comparative analysis of OOD and DOD, examining their

fundamental differences, evaluating their strengths and weaknesses in the game development

context, and reviewing studies, experiments, and benchmarks that compare the two approaches.

2.3.1. Key differences between OOD and DOD from a learning point of view

OOD and DOD diverge in their core principles and design philosophies, and this leads to different

learning experiences which are specific to these points:

− Focus: OOD focuses on encapsulating data and behaviors within objects to get the most out

of inheritance and polymorphism with a "human" like approach as it is how the world is seen,

which helps match the code to the visible reality for comparison and mental planning. In

contrast, DOD prioritized the data representation and its abstraction outside specific contexts

as objects to optimize their layouts and processing with a more abstract and not so "human"

way of seeing the world, making mental planning a lot harder and pushing for tools like UML

to be used to get the most accessible learning experience [14] [76] [78].

− Granularity: OOD usually operates at a higher level of granularity, organizing systems

around objects and their relationships. On the other hand, DOD focuses on individual data

elements and their processing, aiming to maximize cache utilization and improve data access

patterns. This ends up creating two approaches, OOD being the creation of objects and the

relationships between objects over the internal structure of each, and DOD differing with a

structure focused on the operations that will be happening and the data that each will use

without having an emphasis on where that data comes from or is referred by [14] [78].

− Modifiability: OOD's emphasis on encapsulation and abstraction can provide a high degree

of modifiability and extensibility, allowing developers to add or modify behavior by working

with objects and their interactions. DOD's focus on efficient data representation can enhance

Comparing OOP and DOP for video games
State of Art

 - 18 -

performance but may require more substantial changes to the data layout when modifications

are needed [14] [78].

2.3.2. Evaluation of Strengths and Weaknesses in the game development context

In the context of game development, both OOD and DOD offer distinct strengths and weaknesses:

OOD's strengths in game development lie in its ability to manage complex relationships between

game entities, promote code reuse through inheritance and polymorphism, and provide high

modifiability and extensibility. OOD facilitates the creation of hierarchies for game objects,

supports modular development, and enables the encapsulation of behavior and data within

objects. It is advantageous in scenarios that model complex interactions between entities, such

as character behaviors or quest systems [60].

DOD, on the other hand, excels in scenarios where data processing performance is critical. DOD

can significantly improve performance in data-intensive tasks such as physics simulations, particle

systems, and AI calculations by optimizing data layouts, leveraging SIMD instructions, and

focusing on cache-friendly processing. DOD's strengths lie in its ability to exploit data properties,

minimize cache misses, and achieve better parallelization [14].

However, both approaches have their weaknesses. OOD's reliance on encapsulation and

abstraction can introduce performance overhead, especially when dealing with fine-grained data

processing or memory-intensive operations. Also, OOD's ease to use can create problems in the

long term as the ease of addition and a focus on faster coding can lead to the need to reformat

and document large sections of code. DOD's focus on data representation and processing may

require sacrificing some of the benefits of encapsulation and abstraction, making code

maintenance and modification more challenging and harder to write and create a scheme [78].

2.4. Industry Practices and Trends

The game development industry is constantly evolving, and software design practices play a

crucial role in shaping the development process and the quality of games produced. This section

explores the industry practices and trends related to OOD and DOD in game development,

including their utilization, case studies of successful projects, and the emergence of hybrid

approaches that combine elements of both OOD and DOD.

Comparing OOP and DOP for video games
State of Art

 - 19 -

2.4.1. Use of OOD and DOD in the game development industry

OOD has been widely adopted in the game development industry for many years. Its well-

established principles and practices have become the foundation for designing and implementing

game systems. Game engines, such as Unity and especially Unreal Engine, heavily utilize OOD

concepts to provide developers with modular frameworks and tools for building games efficiently

[82].

While relatively newer in the game development industry, DOD has gained attention for its

potential to optimize performance-critical aspects of game systems. Game developers are

increasingly exploring DOD's benefits, particularly in physics simulations, AI processing, and

rendering pipelines. DOD offers opportunities for significant performance improvements by

leveraging data layouts and cache-aware processing [83].

This increase in use has started to push for UML-like structures to represent the necessary data

to develop the game correctly and with structure. This has been called “Data Worksheets” and

contains two tables with specific specifications, one with the data structure and one with the data

management [84]. The example tables can be found in Annex C.

Data Structure:

− Name: A given name to call the variable for.

− Type: The design type of the variable (int, float, vector3, quaternion…).

− Quantity: The number of variables to manage (1-N).

− Read/Write Frequency: Number of times to read/write onto the variable. Helps with

detecting bottlenecks and system structures (Update, OnStart, OnFinish…).

− Reason: Why the data is needed. It helps keep track of reasonings and dependencies in

the data to leverage the order of systems and possible redundancies or structures to

create.

Data Management:

− Data: Name the variables that need to be input into the system.

− Output: Name of the variables that the system will change.

− System: Name of the system responsible for the changes.

− Timely: When and how frequently the system is executed.

− Ext. Data: The data needed from other systems indirectly for this to work.

Comparing OOP and DOP for video games
State of Art

 - 20 -

Creating these tables helps create a mindmap to represent in code in a simpler and more

streamlined way of steps core for the ECS systems creation and management [85].

2.4.2. Case study: Unity's efforts to develop DOTS

Unity Technologies, the company behind the popular Unity game engine, has been actively

exploring the benefits of DOD in game development. Their ongoing initiative, known as the Data-

Oriented Technology Stack (DOTS), serves as a case study highlighting the industry's efforts to

leverage DOD principles for performance optimization and scalability [86].

The DOTS framework aims to provide game developers with tools and workflows that maximize

performance and leverage modern hardware architectures. By embracing DOD principles, Unity

sought to enable developers to build high-performance games with efficient data processing and

improved multithreading capabilities.

DOTS introduces vital concepts such as the Entity-Component System (ECS) and the Burst

Compiler. The ECS architecture allows developers to design game systems (data transformations)

by composing entities (a “group” of data) from smaller, self-contained components (data),

promoting modularity and scalability (Figure 12) [81].

The Burst Compiler is a technology developed to optimize code for specific hardware platforms.

It analyzes the code and generates highly efficient machine code tailored to the target platform’s

characteristics (Figure 13). By leveraging low-level optimizations and utilizing the capabilities of

modern processors, the Burst Compiler can significantly enhance the performance of code written

using the DOTS framework and the necessary help of ECS patterns [87].

The Burst Compiler works hand in hand with the ECS architecture and other DOTS components

to provide developers with a powerful performance optimization tool. It allows for creating high-

Figure 12: ECS infographic [23]

Comparing OOP and DOP for video games
State of Art

 - 21 -

performance code that takes full advantage of modern hardware advancements, such as

vectorization and multithreading. [88]

Unity's efforts to develop DOTS, including the integration of Burst Compiler, showcase their

commitment to harnessing the potential of DOD in game development. By providing a

comprehensive framework that embraces DOD principles and incorporates advanced optimization

techniques like the Burst Compiler, Unity aims to empower developers to build games that deliver

optimal performance across various platforms.

While this commitment pushes for a DOD structure game, OOD is not entirely lost. Some projects

leverage the DOD potential in specific parts of their games for heavy computations while

remaining with a more straightforward and human-friendly structure for the rest of the project

[29].

The case study of Unity's DOTS initiative demonstrates the practical implementation of DOD

principles in a widely used game development engine. It serves as a testament to the industry's

recognition of the performance benefits offered by DOD and its potential to shape the future of

game development practices [30].

Figure 13: Burst view of assembly code [88]

Comparing OOP and DOP for video games
State of Art

 - 22 -

2.4.3. Comparing the learning curve of OOD and DOD

Literature highlights that the learning curve for DOD platforms may be steeper for individuals

new to the concepts and paradigms associated with DOD. Developers may require more time to

grasp the principles, patterns, and techniques specific to DOD and ECS. This could involve

studying relevant documentation, watching tutorials, and actively applying the concepts in

practical exercises [78].

However, it is worth noting that the specific learning curve can vary depending on factors such

as prior experience with similar paradigms, the complexity of the platform, and the availability of

learning resources. Due to OOD being a part of the curriculum in informatics degrees, the

concepts underlining them are understood and applied by graduates [53]. In contrast, most DOD

concepts have yet to be discovered by most, making it a significant entry barrier for programmers

as grasping and using concepts that inheritably differ from their bases is not easy or fast. This is

where the need for not only external tutorials, manuals, and documentation comes into play, as

the concepts can be taught by other people faster than the resources can help with, just like a

college subject would be [89] [90] [91].

Overall, the learning curve for both OOD and DOD approaches may involve an initial investment

of time and effort to understand each design paradigm's underlying principles and tools. With

practice and exposure to relevant resources, developers can gain proficiency and leverage the

respective platforms effectively in game development projects.

2.4.4. Discussion of emerging trends and hybrid approaches combining OOD and DOD

In recent years, a trend has emerged where game developers combine OOD and DOD elements

to leverage each approach's strengths. This hybrid approach aims to strike a balance between

maintainability and performance optimization.

One common approach is to employ OOD at higher levels of abstraction to manage complex

game systems while adopting DOD principles at lower levels for performance-critical components.

For example, game engines may use OOD for high-level game logic and entity management while

employing DOD techniques for physics simulations or heavy computational algorithms.

Comparing OOP and DOP for video games
State of Art

 - 23 -

Another emerging trend is component-based architectures, often associated with Entity-

Component Systems (ECS). These architectures combine the flexibility and modularity of OOD

with the performance benefits of DOD. This has been done via a conversion workflow to convert

GameObjects (objects of Unity) into Entities (used by ECS) with minimal requirements [92]. While

this is standard in the current ECS system, it has heavily changed from the original conversion,

making entity creation a lot more intuitive with a visual helper as an object structure which, when

initialized, is immediately converted into an Entity [93].

By combining OOD and DOD in these hybrid approaches, game developers aim to balance

maintainability, extensibility, and performance optimization, catering to the specific requirements

of their game projects.

2.5. The current state of the Bullet Hell genre

Despite its roots in the early days of arcade gaming, the Bullet Hell genre continues to thrive and

captivate players today. While it may not enjoy the same mainstream recognition as other gaming

genres, Bullet Hell games maintain a dedicated and passionate following, primarily within the

indie gaming community.

One of the remarkable aspects of the Bullet Hell genre is its ongoing development and innovation.

Independent game developers have embraced the genre, pushing its boundaries and creating

unique experiences that cater to a niche audience. These developers often infuse their games

with distinctive art styles, mesmerizing bullet patterns, and intricate level designs, resulting in a

diverse range of Bullet Hell games with distinct flair.

The availability of game development tools and platforms has played a significant role in the

genre's continued growth. With accessible game engines like Unity and Unreal Engine, indie

developers are empowered to bring their creative visions to life, including creating Bullet Hell

games. However, specific engines have been built for these games through the years, like

Danmaku [94] or s successor Danmokou [95], which builds upon Unity’s foundations and is

currently one of the most used engines with results similar to the original bullet hell games

(Figure 14).

Several notable Bullet Hell games have garnered attention and critical acclaim recently. Titles

such as "Enter the Gungeon" or "Ikaruga" have demonstrated the genre's enduring appeal and

indie developers' creativity in crafting engaging gameplay experiences outside the classic bullet

Comparing OOP and DOP for video games
State of Art

 - 24 -

spam. These games often combine the classic Bullet Hell mechanics with elements of roguelike,

metroidvania, or narrative-driven gameplay, further diversifying the genre and attracting new

players.

While the Bullet Hell genre may not garner the same mainstream attention as other popular

genres, its devoted player base and continuous development showcase its enduring appeal. As

indie developers push the boundaries of creativity and innovation, we expect new and exciting

Bullet Hell games that captivate players with their visually stunning displays, challenging

gameplay, and unique twists on the genre's conventions.

Bullet Hell games constantly push their boundaries for wilder, more extensive, and crazier ideas,

making their designers seek the most optimal solutions for their designs. This has made the

previously mentioned engines Danmaku and Danmokou push for new solutions like the Unity

DOTS packages [94].

The need to seek better performance will be studied in this research to compare the designers'

decision to try this paradigm as the bases for the engine they are building.

Figure 14: Fantastic Poetry Festival, created with Danmokou [95]

Comparing OOP and DOP for video games
Objectives

 - 25 -

3. Objectives

This research project aims to compare the Object-Oriented Design (OOD) and Data-Oriented

Design (DOD) paradigms in the context of game development, assess their utility and applicability

to address the unique demands and constraints of modern video games, and explore the

challenges and critical problems associated with transitioning between these paradigms. The

project also seeks to provide insights into the performance implications of adopting OOD and

DOD approaches through a benchmarking-style comparison.

Objective 1: The first objective is to compare the advantages, disadvantages, and trade-offs of

OOD and DOD in game development. This comparison will provide a deeper understanding of the

strengths and weaknesses of each paradigm and identify specific use cases where one approach

may exhibit advantages over the other.

Objective 2: The second objective focuses on assessing the utility and applicability of OOD and

DOD paradigms in addressing modern video games' unique demands and constraints. By

considering factors such as lots of objects to render, complex algorithms, and modular designs,

this assessment will provide insights into the practicality and effectiveness of each paradigm in

meeting the requirements of modern game development.

Objective 3: Another objective is to explore the challenges and critical problems associated with

transitioning from OOD to DOD or vice versa. This investigation will delve into the difficulties

faced during the implementation of OOD and DOD in game development projects and provide a

comprehensive understanding of the potential hurdles developers may encounter when working

with either paradigm and transitioning from the standard OOD to DOD paradigms.

Objective 4: The final objective is to analyze the performance implications of adopting OOD and

DOD approaches. The project will compare frame rates, memory usage, and loading times

through benchmarking. This analysis will provide valuable insights into the performance trade-

offs associated with each paradigm, helping developers make informed decisions when selecting

an appropriate design approach.

By achieving these objectives, this research project aims to contribute to the body of knowledge

in game development and expand the understanding of the DOD paradigm while providing

recommendations for their appropriate usage in different game development scenarios.

Comparing OOP and DOP for video games
Methodology

 - 26 -

4. Methodology

This research project adopts an agile scrum methodology to facilitate the systematic exploration

and comparison of Object-Oriented Design (OOD) and Data-Oriented Design (DOD) in game

development. The project is iterative, leveraging online meetings and email communication to

ensure continuous updates and feedback.

The Scrum methodology allows flexible adaptation to evolving research requirements and

encourages frequent feedback loops. The project is divided into manageable sprints, each with

specific goals. During each online meeting, we discuss the project's current status, identify any

challenges encountered, and make decisions regarding the next steps.

The research started with longer scrum cycles as research took more prolonged periods, just like

creating the documentation and the bases to build the project, which is when the scrum cycles

became shorter to manage any possible roadblocks that may occur mixing regular communication

via email as a means to provide detailed updates on individual tasks and address any questions

that arose during the project.

4.1. Development methodology

The development methodology employed for implementing the game using both OOD and DOD

paradigms involve using the Unity game engine and its Entity Component System (ECS)

framework for the DOD approach and the standard C# for the OOD implementation. The goal

was to ensure a fair and comparable comparison between the two design paradigms while

maintaining modularity and user-friendly interactions like setting the data in the editor without

needing to go to the code for bullet speed or the number of enemies to spawn. Unity provided

the necessary tools and functionalities for both OOD and DOD implementations.

The OOD implementation followed traditional object-oriented principles, emphasizing

encapsulation, inheritance, and polymorphism to structure and organize game objects and their

associated behaviors.

The ECS framework was utilized for the DOD approach, which focuses on the data-oriented

organization and performance optimization, creating an API that handles most of the complex

relationships and a clear guideline to optimize for performant assembly code with Burst.

Comparing OOP and DOP for video games
Methodology

 - 27 -

Efforts were made to keep the comparisons between the OOD and DOD implementations as close

as possible. This involved designing the data components to be implemented similarly in both

paradigms, using the already available resources when necessary, and trying to showcase the

strengths of both paradigms.

The OOD implementation represented game objects as classes, fundamental building blocks with

well-defined relationships and behaviors. Delegates and interfaces enabled objects to adapt and

react in various ways based on specific requirements or events. Delegates allowed for the

encapsulation of methods, providing a flexible mechanism for callback functions and event

handling like object-pool expansions.

Conversely, interfaces defined contracts that specify a set of methods that implementing classes

must adhere to, facilitating polymorphism and promoting code reusability, and creating interactive

behaviors that are easily interchangeable.

The OOD implementation employed pooling techniques to optimize resource utilization and

reduce instantiation overhead. Object pooling involved creating a pre-allocated pool of reusable

objects, which could be dynamically acquired and released as needed. This approach minimized

the overhead of creating and destroying objects, improving performance and reducing memory

fragmentation.

On the other hand, the DOD implementation emphasized the organization and manipulation of

data for optimal performance. The relationships between data entities were the primary focus,

and specific systems were designed to process and operate on this data efficiently.

One of the DOD implementation's core components was using jobs that allowed for the parallel

execution of tasks, enabling efficient utilization of multiple processing cores. By dividing the

workload into smaller units that could be executed concurrently, jobs facilitated improved

performance and scalability.

In addition to jobs, the DOD implementation employed multiple systems. These systems were

responsible for performing specific operations on the data, such as updating positions, handling

collisions, or spawning entities. The systems created queries that defined sets of entities based

on specific criteria, allowing them to turn their execution on or off or stop as needed selectively.

This selective execution reduced unnecessary computation and improved overall efficiency.

Comparing OOP and DOP for video games
Methodology

 - 28 -

The DOD implementation used blittable data to optimize data access and processing further.

Blittable data structures can be directly traduced to assembly; they are unmanaged and do not

contain references. Blittable data structures are critical concepts for parallel jobs and the Burst

Compiler, which massively helped the performance.

The DOD implementation aimed to maximize performance, parallelism, and data access efficiency

by incorporating jobs, multiple systems with queries, and blittable data structures. These

techniques allowed for scalable and optimized data processing, enabling efficient utilization of

available hardware resources and enhancing overall performance in the game development

context.

4.2. Evaluation methodology

This project investigates and compares OOD and DOD in game development. It seeks to provide

insights into their effectiveness, performance, suitability for game development, and the human

requirements to adopt and utilize them.

The comparison evaluation methodology follows Basili's Goal Question Metric (GQM) methodology

[96]. It involves several steps to structure the evaluation process. Firstly, clear goals are defined,

such as assessing effectiveness, performance, suitability, and human requirements of OOD and

DOD. Based on these goals, specific questions are formulated, guiding the evaluation process.

Relevant metrics, such as frame rate or maximum number of objects/entities, are defined to

measure and answer the questions. Data is collected, aligned with the metrics, and analyzed to

conclude. Then, the findings are interpreted and reported. By employing the GQM methodology,

this evaluation ensures a structured and rigorous approach to assess these design approaches.

4.2.1. Research Questions

− What are the specific use cases in game development where OOD or DOD exhibits

advantages over the other?

− What challenges are encountered when utilizing OOD and DOD in game development?

− What key concepts are necessary to transition from OOD to DOD successfully?

− What are the costs associated with migrating an existing project from OOD to DOD?

Comparing OOP and DOP for video games
Methodology

 - 29 -

4.2.2. Metrics

− Comparative performance analysis in various game development scenarios using OOD

and DOD.

− Identification and analysis of challenges faced during the implementation of OOD and

DOD in game development.

− Assessment of the key concepts required to transition from OOD to DOD successfully.

− Evaluation of the costs of migrating an existing project from OOD to DOD.

− Examination of the advantages and disadvantages of DOD compared to OOD in game

development.

4.2.3. Data Collection

This research will involve extensive literature reviews, studies, and case analyses to gather

relevant data and information about OOD and DOD in game development. It will also develop a

prototype with OOD and DOD as their paradigms to conduct CPU and memory usage tests, among

other metrics.

4.2.4. Data Analysis

The collected data will be analyzed to provide comprehensive insights, comparisons, and

recommendations regarding the advantages, challenges, costs, and overall effectiveness of OOD

and DOD in game development. The analysis will be conducted on the same case scenarios for

both paradigms to try and minimize differences that the different settings may have on

performance. Conclusions will be drawn based on this analysis, addressing the research

questions.

4.3. Methodology choice

Basili's GQM model is a structured approach used in research to establish clear goals, pose specific

research questions, and identify appropriate metrics for measurement and evaluation. In this

project, the GQM model provided a clear and systematic framework for conducting the experiment

and analyzing the results in a purpose-driven way to connect them with the initial goals (Figure

15).

Comparing OOP and DOP for video games
Methodology

 - 30 -

In addition to adopting the GQM model, this research project can be categorized as an in-silico

experiment [97]. An in-silico experiment is a simulation-based experiment using computer

models, algorithms, and virtual environments. It simulates and analyzes complex systems or

processes using computational tools and techniques.

In this context, the in-silico experiment compares the OOD and DOD paradigms in video game

development. The experiment utilizes computer models, simulations, and performance analysis

to evaluate each paradigm's advantages, challenges, and trade-offs, except for the person-based

learning curve. By experimenting in a virtual environment, researchers can control variables,

gather precise data, and study the impact of design choices on game development without the

need for physical prototypes or real-world testing.

Combining the GQM model and the in-silico experiment approach ensures a systematic and

rigorous methodology for this research project. It allows for formulating specific research

questions, selecting appropriate metrics, and exploring the OOD and DOD paradigms within a

controlled virtual environment.

Figure 15: Scheme application of the GQM methodology

Comparing OOP and DOP for video games
Methodology

 - 31 -

4.4. Working routines

This research project adopts an agile Scrum methodology to facilitate the creation of the

prototype. The project follows an iterative approach, leveraging regular email communication to

ensure continuous updates and progress tracking and prevent bottlenecks.

The Scrum methodology allows flexible adaptation to evolving research requirements and

encourages frequent feedback loops. Due to the research nature using a technology being created

in parallel, the need for constant loops is more than a requirement but a necessity. During the

online meetings, we discussed the project's current status, identified any challenges encountered,

and collectively made decisions regarding the next steps.

Regular communication via email serves as a means to provide detailed updates on individual

tasks, share relevant resources, and address any questions or concerns that arise during the

project. The in-person and online meetings are reserved for significant updates or bottlenecks

needing faster resolutions or good collaboration to find solutions.

By using the agile methodology, the research can keep up with the technology changes, adapt

and plan for changes that may need to be made, and try to predict and work with those changes

in mind consistently.

Comparing OOP and DOP for video games
Description and Implementation

 - 32 -

5. Description and Implementation

The upcoming sections of this thesis will delve into the implementation and comparison of the

bullet hell game prototype, which serves as a testbed for evaluating the Object Oriented Design

(OOD) and Data-Oriented Design (DOD) approaches. It is worth noting that the prototype will be

developed in Unity, a popular and versatile game engine known for its robust features and ease

of use.

The Integrated Development Environment (IDE) chosen for this project is Rider from JetBrains

to facilitate the development process and take advantage of Unity's capabilities. Rider is a

powerful IDE that provides comprehensive support for Unity development, including its latest

advancements, such as Data Oriented Technology Stack (DOTS) support.

Throughout the research, the game prototype will be designed and implemented with a focus on

the core mechanics and gameplay elements of a bullet hell game while keeping the prototype

bases not to overload the game.

5.1. Game description and mechanics

The bullet hell game prototype encompasses various gameplay mechanics, including moving,

shooting, and collisions, all contributing to the gameplay experience. This section provides a

detailed overview of these core mechanics while highlighting the utilization of basic graphics, in-

editor parameterization, and comprehensive documentation.

• Moving: The player should be able to move freely along the available axes. This means

having 2D movement over a plane in the prototype to create an older top-down

perspective for the player.

• Shooting: The player should be able to shoot whenever required, specified by some

parameters. The bullets should be able to be changed at runtime as well as their

parameters like speed or their amount. Shooting should have some depth, like creating

multiple bullets in the same wave around the player or specific attack arcs.

• Collisions: Collisions play a crucial role in the game prototype. Collisions should mainly

occur between enemies and bullets. The enemies should lose an amount of health

specified by the bullet as it gets destroyed or a specific action gets triggered.

Comparing OOP and DOP for video games
Description and Implementation

 - 33 -

Additionally, the prototype should offer in-editor parameterization allowing developers to adjust

various gameplay parameters without modifying the underlying code. This capability enables

rapid iteration, fine-tuning mechanics, and efficient experimentation during development.

Comprehensive documentation accompanies the game prototype, outlining the game mechanics

and implementation details and providing guidelines for modification and expansion. This

documentation supports the project's educational purposes and is valuable for knowledge sharing

and future enhancements.

In the subsequent sections, we will explore the implementation of the bullet hell game prototype

using the DOD and OOD approaches. Through this analysis, we aim to gain insights into the

benefits and trade-offs of each design paradigm in terms of performance, maintainability, and

overall game development experience.

5.2. OOD implementation

OOD promotes code modularity and reusability by breaking down the game's functionality into

modular and reusable components. Each component, encapsulated within its class, encapsulates

its data and behavior, allowing easy reuse and maintenance. For example, the PlayerManager

class handles player input management, movement, and shooting, promoting modularity and

separating player-related logic from other gameplay mechanics.

Encapsulation is a fundamental principle of OOD, ensuring that data and methods are grouped

within a class. This promotes code organization and readability, as related functionality is

contained within well-defined boundaries. Encapsulation also reduces dependencies between

different game parts, making maintaining and modifying specific components easier without

affecting the entire codebase. The encapsulation of enemy behavior within the EnemyBehaviour

class exemplifies this principle, enabling centralized control and management of enemy entities

while isolating their logic from other game systems. This is further explored by implementing

interfaces that encapsulate specific projectile behaviors that can be interchanged and constructed

easily and expanding the code without the need to understand what the underlining programs do

just by "attaching" the new interface implementation.

In addition to scalability, the OOD approach simplifies code maintenance and debugging. The

structured class hierarchy and encapsulation make isolating and fixing issues within specific

objects or components easier. Changes or bug fixes can be made to individual classes without

Comparing OOP and DOP for video games
Description and Implementation

 - 34 -

impacting the rest of the system, promoting easier debugging, and reducing the risk of

unintended side effects.

The OOD implementation also facilitates collaboration and teamwork among developers. The

modularity and clear separation of responsibilities provided by OOD allow team members to work

on different components independently, promoting parallel development with an initial setup.

5.2.1. Implementing the code

We will explore various scripts and classes developed to bring the game to life and examine the

reasoning behind their implementation. These codes represent an implementation that closely

resembles the mechanics and functionalities of a bullet hell game, showcasing the utilization of

OOD principles to create a robust and modular system.

The implementation utilizes structs, interfaces, and encapsulation to achieve efficient data

organization and improve performance. Structs, such as the BulletParameters struct, encapsulate

the necessary parameters for spawning bullets, allowing for efficient passing and management

of data. Interfaces, like IBulletBehaviour and IBulletSpecifics, define contracts that ensure

consistent behavior across different bullet types and promote code modularity and flexibility.

Figure 16: Structure for the Object Oriented Structure

Comparing OOP and DOP for video games
Description and Implementation

 - 35 -

Encapsulation helps separate concerns and isolate specific functionalities within individual scripts,

contributing to better code organization and ease of maintenance.

Figure 16 shows how the structure was organized with the least connections between different

classes, creating complexity within the modules and keeping the modular approach with

interfaces to construct the complexity.

5.2.2. Interactions and pipeline

The game prototype utilizes various procedures to create a cohesive gameplay experience. These

procedures are interconnected and communicate with each other to ensure smooth gameplay

flow and proper functioning. The following outlines the interaction between these systems:

• On Start:

o Object pools are created using the ObjectPool script. These pools manage the

instantiation, usage, and recycling of game objects such as bullets and enemies. The

game optimizes memory usage by pre-creating object pools and avoids the overhead

of creating and destroying objects during gameplay.

o Weapons are instantiated and assigned their respective bullets by the PlayerManager

script. Each weapon type has a corresponding WeaponBehaviour script attached to

it, which handles the behavior and properties of the associated bullets. This setup

allows different weapons with unique bullet types and behaviors to be easily created,

assigned, and managed by the player.

• On Update:

o Input is checked and handled by the PlayerManager script. This includes capturing

player movement commands and shooting actions.

o Bullets, players, and enemies are updated. PlayerManager and EnemyManager

update the positions of their managed objects, and each bullet manages itself

through the specified interfaces.

o Bullets invoke their specific implementations (interfaces), such as IBulletBehaviour

and IBulletSpecifics. These interfaces define the methods for bullet update, collision

detection, and destruction. Bullets exhibit unique behaviors and effects by calling the

appropriate methods based on their specific bullet type.

o The Unity physics engine handles collision detection. When collisions occur between

game objects, such as bullets and enemies, Unity's collision detection system triggers

appropriate collision events. The relevant scripts then process these events to handle

the effects of collisions for their situations.

Comparing OOP and DOP for video games
Description and Implementation

 - 36 -

• On Collision:

o When a collision occurs between an enemy and a bullet, the BulletBehaviour script

detects the collision event. It communicates with the corresponding enemy object

before handling itself for destruction or anything specified in the IBulletSpecifics.

Towards the collided enemy, bullets may apply damage, trigger special effects, or

reduce the enemy's health based on its specific implementation defined by the

IBulletSpecifics interface. Similarly, enemies may interact with bullets upon collision,

potentially reducing their lifespan or applying defensive measures.

• On Destroy:

o When bullets or enemies are destroyed, or at the end of their lifespan, they are

returned to their respective object pools using the ObjectPool script. This ensures

efficient memory management and allows for the reuse of game objects instead of

constantly instantiating and destroying them. The game maintains a consistent pool

of available objects by returning objects to the pool, reducing memory overhead and

improving overall performance.

These interconnected systems and their interactions create a dynamic and modular gameplay

experience and ease of gameplay design.

5.2.3. Script division

The bullets were the most challenging part to design and implement. They are the most modular

section, as every Bullet Hell will implement many of them, requiring easy-to-use implementations

that can be expanded. For this, the use of interfaces was convenient, letting future coders create

a new interface implementation and then assign it via the editor. The weapon class also shows

this creation, which encapsulates all the bullets and their behavior, creating self-managed sections

going down into the bullet behavior.

Figure 17: Bullet relationships

Comparing OOP and DOP for video games
Description and Implementation

 - 37 -

• BulletParameters: (Figure 17.A)

o Logic: The BulletParameters script defines a struct to encapsulate all the parameters

required to spawn a bullet. Organizing the bullet-specific data into a single structure

makes it easier to pass and manage the necessary information when creating bullets

dynamically during gameplay.

o Benefits: A struct allows for efficient memory allocation and performance, as structs

are value types with a stack-based allocation [98]. It also promotes code clarity and

organization by grouping related bullet parameters, making it easier to understand

and maintain the codebase.

• WeaponBehaviour: (Figure 17.B)

o Logic: The WeaponBehaviour script is responsible for managing the behavior of a

specific type of bullet. It handles the setup of bullets, including their initial position,

speed, and other parameters, based on player input and predefined values.

o Functionality: When the player initiates a shooting action, the corresponding

WeaponBehaviour script pools a new bullet object and assigns it the appropriate

parameters and behavior according to the specified type.

• BulletBehaviour: (Figure 17.C)

o Usage: The BulletBehaviour script controls the specific behavior of individual bullets

in the game, handling their initialization, updating, collision detection, and

"destruction."

o Functionality: Each bullet instantiated in the game is associated with a

BulletBehaviour script. When a bullet is spawned, it initializes its speed based on the

predefined bullet type. During gameplay, it updates the bullet's position, applies

movement patterns or transformations, and detects collisions with other game

objects, such as enemies.

• IBulletBehaviour: (Figure 17.D)

o Usage: The IBulletBehaviour interface defines the required methods for setting up

and updating a bullet's behavior. A new one can be created to change the bullet's

movement and selected by the editor to directly link the new movement pattern.

o Functionality: The IBulletBehaviour interface is a contract that bullet-specific scripts

must implement, which creates an easy-to-use and attached method to change the

bullet's behaviors. It ensures all bullet types adhere to standard methods for setup

and updating.

• IBulletSpecifics: (Figure 17.E)

o Usage: The IBulletSpecifics interface defines the required methods for updating,

handling collisions, and destruction of a bullet. A new one can be created to change

Comparing OOP and DOP for video games
Description and Implementation

 - 38 -

the bullet's destruction behavior, like having an explosion that damages nearby

enemies.

o Functionality: The IBulletSpecifics interface is a contract that bullet-specific scripts

must implement, which creates an easy-to-use and attached method to change the

bullet's behaviors. It ensures all bullet types adhere to standard updating, colliding,

and destruction methods.

• BulletCollector: (Figure 17.F)

o Reasoning: The BulletCollector script manages bullets that may leave the screen's

view by directly returning them to the pool. It ensures efficient memory usage and

prevents unnecessary calculations on bullets that are no longer visible.

o Benefits: The BulletCollector script helps optimize performance by removing bullets

that are no longer relevant, reducing the computational load on the game. By

efficiently managing the lifecycle of bullets and removing unnecessary objects from

memory, it contributes to a smoother gameplay experience and better overall

performance.

The player was the easiest to implement as it is the typical player controller, which implementation

is standard in the industry and has been seen along the different subjects in the career. It reads

from the player and creates the weapons, making it the most exciting part as it reads from the

editor's input to generate them, creating a simple and interactive UI dynamically.

• PlayerManager: (Figure 18)

o Logic: The PlayerManager script handles input management for the player, including

movement and shooting. It also orchestrates the creation of different weapons, given

some start parameters.

o Benefits: Encapsulating the player-related functionality within the PlayerManager

script promotes modularity and separation of concerns. It allows for a clear

separation between player input handling and other gameplay mechanics, making

the codebase easier to extend or modify.

Figure 18: Player relationships

Comparing OOP and DOP for video games
Description and Implementation

 - 39 -

Implementing the enemies was relatively straightforward since they follow the same structure as

the player, except for movement management and the ability to have multiple instances. Their

design is modular, so creating more complex behaviors by incorporating the bullet's approach

with the enemy interfaces is easy. While the prototype did not require this level of complexity, it

was still an option for future development.

EnemyManager: (Figure 19.A)

o Logic: The EnemyManager script sets and pools all the enemy entities in the game.

It handles the enemy waves.

o Benefits: Encapsulating enemy wave functionality within the EnemyManager script

allows for centralized control and management of enemies' waves, simplifying the

creation of wave types and structs to parametrize them specifically in complex ways

[99].

• EnemyBehaviour: (Figure 19.B)

o Usage: The EnemyBehaviour script controls the behavior of enemy entities in the

game, including their setup, updating, collision detection, and destruction.

o Functionality: Each enemy entity in the game is associated with an EnemyBehaviour

script. When an enemy is spawned, it initializes its movement patterns for the update

cycle. During gameplay, it updates the enemy's position towards the player, applies

movement patterns or behaviors if required, detects collisions with other game

objects, and handles the "destruction" of the enemy when appropriate, such as when

its health is depleted.

Figure 19: Enemy relationships

Comparing OOP and DOP for video games
Description and Implementation

 - 40 -

Creating a struct to manage pools was the prototype's first step. While Unity has its pooling

system, creating one from scratch gave more flexibility towards letting editor variables define

specific behaviors and understanding the insides of a rather complex design pattern. This helps

compare it with the DOD implementation as I got a hands-on experience with the complexity of

pooling and managed objects.

• ObjectPool: (Figure 20.A)

o Logic: The ObjectPool script manages the creation, usage, and expansion of object

pools in the game, such as bullets and enemies. It optimizes performance by recycling

and reusing objects instead of instantiating and destroying them repeatedly during

gameplay.

o Benefits: Object pooling offers several advantages, including reduced memory

allocation and deallocation overhead, an improved performance due to minimizing

expensive instantiation and destruction operations, and better control over the

number of active objects at any given time. Using an object pool promotes efficient

memory usage and smoother gameplay performance.

• PoolAnalyzer: (Figure 20.B)

o Usage: The PoolAnalyzer script provides a user interface (UI) that displays real-time

information about the status of active bullets and enemies in the game.

o Functionality: The PoolAnalyzer script continuously monitors the bullet and enemy

pools, retrieving the current number of active objects. This information is then

displayed in the UI, visually representing the object pool usage. The PoolAnalyzer

script is a debugging tool and provides insights into using the object pooling system.

Figure 20: Definition & Generic relationships

Comparing OOP and DOP for video games
Description and Implementation

 - 41 -

5.2.4. In-Editor view

The development of the bullet hell prototype in Unity

benefits from the in-editor view, which provides a

convenient and intuitive environment for script

management and customization. The Enemy, Player,

and Bullet scripts can be accessed and modified within

the Unity editor. This allows developers to fine-tune

gameplay mechanics, adjust parameters, and iterate

on the game's design more efficiently. The hierarchy

tries to express and convey that by their names, as

shown in Figure 21. Here are the details of the

essential fields that can be directly edited within the

editor:

• Enemy Script: (Figure 22)

o The Unity editor displays the Enemy script

as a component attached to enemy

entities or prefabs. Developers can access

and modify various properties of the

enemy, such as movement speed, spawn

radius, or health.

o The only requirement is the Player

Position as a reference since the default

movement of the enemies is towards the

player, and having a reference is less

expensive than searching it at runtime.

• Player Script: (Figure 23)

o The Player script is also visible as a

component within the Unity editor,

attached to the player character.

Developers can access and configure

different parameters associated with the

player, including movement speed, initial

weapon, and modes.

o There are more requirements in this as we

need to know what will be moving (root)

Figure 21: OOD Hierarchy view

Figure 22: Enemy manager parameters

Figure 23: Player manager parameters

Comparing OOP and DOP for video games
Description and Implementation

 - 42 -

and where the bullets will be shoot from

(shoot point). Like with the Enemy, we store

the camera reference to avoid getting it at

runtime. Both Shooting and Positional Range

are visual details that can be entirely omitted.

• Bullet Script: (Figure 24)

o The Bullet definition is accessible from the

editor as well, with some specific setup.

Thanks to Odin’s plugin, List<> can be shown

in the editor directly [100]. This lets the

programmer create multiple types of bullets

without going to the code side.

o The bullets are defined in two sections: pool

and bullet settings. The pool settings are

related to the overall management, the bullet

prefab, the pooling amount, and how it is

expanded when needed, among other

parameters which tune the overall

functionality. On the bullet side, everything

can be changed on how the bullet works,

speed, arc to shoot, amount, and even

specific behavior with the interfaces directly

from the editor.

o Modularity has a cost in the code, but Unity

does a wonderful job connecting them with

as much ease as possible, making coding

these modular classes much more effortless.

Figure 24: Bullet parameters

Comparing OOP and DOP for video games
Description and Implementation

 - 43 -

5.3. DOD implementation

5.3.1. Understanding the framework

The Unity framework for DOD is called ECS by the sections that define it, Entities, Components,

and Systems. Throughout this section, these terms will be constantly used among some related

ones, so first is understanding these concepts. A general explanation can be seen in Figure 25,

but let us dive into the specific insights for each part: [101]

• World: (Scene container) A collection of entities that can interact with each other. It

can be seen as a classic Unity scene but for code only.

• Entities: (A "thing") Entities represent the fundamental building blocks of the game

world. They are unique identifiers that encapsulate and group related data components.

In itself, it is nothing but can represent lots of things as data groups. It has an index and

version number to identify them in the respective chunk and index (Figure 26). [102]

Entities then are ordered by archetypes depending on the components they have. This

ensures that all the arrays of data are shared among all the entities in the chunk (Figure

28, Figure 27). This also means that creating and destroying entities is simple; just

adding the data components to the specific archetype arrays and future systems will pick

them up and process them. This makes the use of pooling unnecessary, as enabling and

disabling entities is not a possible thing. Only components can be enabled, a recent

feature that comes with a performance cost [103].

Figure 26: Internal definition of an entity [102]

Figure 25: General definition of ECS [101]

Comparing OOP and DOP for video games
Description and Implementation

 - 44 -

• Components: (Data) Components are data containers that hold specific attributes and

properties of entities. They are self-contained and devoid of any behavior. The stored

data is stored in chunks and mostly unmanaged so that we can know the size in memory,

and it does not contain references managed by the garbage collector.

• Systems: (Transformations) Systems modify and operate on entities with specific

components. They contain the logic and behavior that manipulate the data stored in

components to create the gameplay. They run on the main threat and usually schedule

their complexity into jobs that act on the worker threads.

• Jobs: (Thread) Jobs are responsible for making code run in parallel along threads or

workers, as Unity calls them. They can run in different types, per entity, per chunk, and

transform... Leading to multiple options to tackle specific problems.

• Burst Compiler: (Assembly and SIMD) The Burst compiler is a crucial component of the

Unity Jobs system, specifically designed to optimize C# code for performance. It

leverages low-level optimizations and generates highly efficient machine code tailored for

specific platforms. It has specifications like the inability to handle managed data types,

Figure 28: Archetype definition inside a world [102]

Figure 27: Entity grouping [102]

Comparing OOP and DOP for video games
Description and Implementation

 - 45 -

enums, and other things shown in the documentation [104] [105]. Its uses can be used

outside ECS, but the strict requirements make it more challenging.

5.3.2. Creating the data worksheet

As explained in the State of Art section and Annex C, DOD has a specific type of diagram called

Data Worksheet. It helps create easy-to-use and understandable systems to manage specific data

types and see their order and dependencies. Here are the tables of the Data Worksheet for this

project. Due to the prototype's low number of entity types, bullets (Table 1), players (Table 2),

and enemies (Table 3) get an initial table.

Bullets

(BulletTag)
Type Read Frequency Write Frequency Why do we need it?

Transform LocalTransform Once every frame Once every frame
Rendering and

movement

Velocity float Once every frame Authoring Movement

Direction float2 Once every frame Once on init Movement

Collision Radius float Once every frame Authoring Collision calculations

Pierce int Once every frame
Authoring

On Collision

Destruction of the

bullet

Table 1: Data worksheet for bullet entities

Player

(PlayerTag)
Type Read Frequency Write Frequency Why do we need it?

Transform LocalTransform Once every frame Once every frame
Rendering and

movement

Velocity float Once every frame Authoring Movement

Rotation Velocity float Once every frame Authoring Movement

Table 2: Data worksheet for player entities

Enemies

(EnemyTag)
Type Read Frequency Write Frequency Why do we need it?

Transform LocalTransform Once every frame Once every frame
Rendering and

movement

Velocity float Once every frame Authoring Movement

Health int Once every frame
Authoring

Once on init

Destruction of the

enemy

Table 3: Data worksheet for enemy entities

Comparing OOP and DOP for video games
Description and Implementation

 - 46 -

After defining the unmanaged data for the entities, we need to define how they will be

transformed and used. For that purpose, we use the second table of the Data Worksheet for data

transformations (Table 4). This table reads, “The System/Job uses the Input to generate

changes in Output depending on Other Data.”

Input Output System/Jobs
When and how

frequently?

Need other

data?

Transform

Velocity

Rotation Vel.

Direction

Transform

BulletMovementSystem

EnemyMovementSystem

PlayerMovementSystem

Once every frame -

Health

EnemyTag
Health EnemyMovementSystem Once every frame

Transform

BulletTag

Collision Radius

Transform

PlayerTag

Direction

Entity
BulletSpawnSystem On-demand by player

Transform

PlayerTag

Health Entity EnemySpawnSystem On-demand by player
Transform

PlayerTag

Transform

Pierce

Collision Radius

BulletTag

Pierce

Entity
BulletPierceCheck

Once every frame

When pierce<0, the

bullet is destroyed

Transform

EnemyTag

Health

EnemyTag
Entity EnemyHealthCheck

Once every frame

When health<0, the

enemy is destroyed

-

Transform

BulletTag
Entity DestroyWhenOffCamera

Once every frame

When the bullet is off-

camera, it is destroyed

-

Table 4: Data worksheet component transformations

Comparing OOP and DOP for video games
Description and Implementation

 - 47 -

5.3.3. Implementing the code

With the data layout defined, we need to define the actual code to implement them. One of the

key factors of ECS is to separate data from behavior. Since the data was previously defined on

the Data Worksheet, this section will delve into the core algorithms that transform those

components.

Figure 29 shows how the structure was organized. The approach is somewhat similar to the

OOD one, with some key differences. Authoring scripts like BulletAuthoring or EnemyAuthoring

are data components that define the entity's initial components (chunk) to add when it gets

instantiated, just like a prefab would, like the bullet’s pierce in the BulletAuthoring or the enemy’s

health in the EnemyAuthoring. Apart from the authoring, most systems will schedule jobs to do

the computation, not to overload the main thread. Those jobs are marked with a dotted

background in Figure 29.

5.3.4. Pipeline

When the game is launched, a World is created where all the entities will be created. Then the

managed pipeline starts:

• On Awake

o Any subscene in the present Unity scene will be treated as inside the created world

and will be converted to entities. This is the case of the Player, which lives inside the

Figure 29: Structure for the Data Oriented Structure

Comparing OOP and DOP for video games
Description and Implementation

 - 48 -

ECS subscene. It has an Authoring component that tells the system how the entity

should be created and exposes any parameters that may be needed onto the editor.

o Systems are created and ordered randomly among their groups keeping any specified

order if needed.

o Data chunks are created for the current entities and are allocated in memory.

• On Start

o Systems check their start conditions. These are preconditions for the script to run,

usually related to a singleton existing or an entity being created. They also set their

dependencies, the input and output data from Table 4. They will be set accordingly,

meaning that if data is read or written only, it will be expressly specified to enable

better parallel work on the job threads. Specifying the relationship with the data is

the programmer's responsibility; if not specified, the code will default to read and

write, creating a less streamlined and performant code.

• On Update

o All systems that are enabled and meet their preconditions run, executing their codes

and setting any jobs they need to run. They also update their dependencies if needed

and set them for the next frame to create an action pipeline.

o Jobs run in parallel along all threads as they are activated. They cannot be

communicated with and will only return information when it fully finishes being

unable to be stopped until then. They should know their dependencies, and the

programmer should give them the correct ones to avoid inaccurate data. This means

that a job should depend on other jobs being completed creating a tree structure

along all systems like in Figure 30, where job D depends on jobs E, F, and G being

completed before it runs, which means that in Figure 30, status, the job D would

still need to wait for jobs G and H to finish. [106]

Figure 30: Job branching dependencies [106]

Comparing OOP and DOP for video games
Description and Implementation

 - 49 -

• On Frame End

o This step is remarkable as it is unique to the framework. It runs when all systems

have finished their code, and any internal job has also finished. Then, it sees the next

frame’s system dependencies and checks if any job is locking the required data. If it

is, it will be called to be complete before the next frame starts. While this may look

like it can create bottlenecks, the Burst Compiler makes jobs super performant,

usually making the main thread the one to end the latest.

o Another part of this step is that any in-memory operation is done at this step, so it

does not affect any systems. This includes instantiating and destroying entities.

• On Frame Start

o This is also a remarkable step as it is unique to the framework. When the frame has

ended and all the dependent jobs have finished, all systems check their data chunks

to see if there are entities in them activating or deactivating their update sections

accordingly and adding any dependencies that may arise from the activation.

Knowing how the pipeline of information works lets us build the systems accordingly, which will

be shown in the following section.

5.3.5. Script division

In the DOD implementation, we have organized the scripts into different categories based on

their functionality and purpose. This division allows for better modularization and separation of

concerns, enabling efficient data processing and optimization. Here is an overview of the script

division in our DOD implementation:

Figure 31: Bullets processing relationship

Comparing OOP and DOP for video games
Description and Implementation

 - 50 -

Managing the bullets in DOD was surprisingly more straightforward than the OOD toughness and

modularity. The tag system makes it much easier to change the bullet's behaviors, and just

changing one for another lets another system process it, changing its behavior. Collisions were

done by hand as the official Unity Physics was not released when the project was being developed

[107].

• BulletAuthoring: (Figure 31.A)

o Logic: The BulletAuthoring script handles the conversion aspects of bullets, allowing

designers to define their components in the Unity Editor. It provides an interface for

configuring bullet characteristics such as Pierce and sets the components the bullet

entities will have when created as a template or archetype to follow.

o Benefits: A particular conversion method encapsulates the exact data we require in

a script, only needing minor changes to update the components, which is as simple

as using AddComponent<> with a new one in the conversion (Figure 32).

• BulletSpawnSystem: (Figure 31.B)

o Functionality: The BulletSpawnSystem is responsible for spawning bullets in the game

world based on predefined criteria. It handles the instantiation and initialization of

bullet entities. This was done inside the system instead of in a job to evaluate the

differences it would create when running.

o Benefits: By utilizing a system dedicated to bullet spawning, we can efficiently

manage bullet creation and ensure consistent behavior. This allows for easy

customization of spawning rules and dynamic bullet generation during gameplay.

• BulletMovementSystem: (Figure 31.C)

o Functionality: The BulletMovementSystem manages the movement of bullets within

the game world and their current state by creating two jobs that handle that.

o BulletMovementJob: (Figure 31.D)

Functionality: The BulletMovementJob is a parallel job system that performs the

movement calculations for bullets, leveraging the power of multi-threading and

Figure 32: Bullet authoring script

Comparing OOP and DOP for video games
Description and Implementation

 - 51 -

data-oriented processing. This system is run per-entity basis, so every bullet gets

called by the system to be updated.

Benefits: We can create multiple behaviors with multiple jobs along different

systems using a job system if we have multiple bullet types. This is different from

the OOD approach as it cannot be created modularly since we have to have

predefined data chunks.

o BulletPierceCheckJob: (Figure 31.E)

Functionality: The BulletPierceCheckJob is a job system that checks for bullet

collision. It detects collisions with enemy entities and determines whether a bullet

should keep living (pierce=>0) or be destroyed (pierce<0). This is not done

directly, as destroying entities is a memory change operation, so it gets scheduled

to do it safely at the end of the frame.

Benefits: Using a job system for bullet collision and pierce checks allows for

efficient and parallel processing along all entities. While now the Unity Physics

package could now do this more efficiently, the job performance is not too

different.

• DestroyedWhenOffCamera: (Figure 31.F)

o HandleOutsideCameraJob: (Figure 31.G)

Functionality: The HandleOutsideCameraJob is a job system that detects and

destroys bullets or entities that have moved outside the camera's view and

destroys them. It helps maintain performance and optimizes resource usage by

removing objects that are no longer visible.

Managing the player is just as easy as in OOD. Implementing the Input system as unmanaged

code lets the use of standard code inside the ECS system, making the transition a 1 to 1 mirror

of the original code.

Figure 33: Player processing relationship

Comparing OOP and DOP for video games
Description and Implementation

 - 52 -

• PlayerAuthoring: (Figure 33.A)

o Logic: The PlayerAuthoring script handles the authoring aspects of the player entity,

allowing designers to define components specific to the player's character. It also

created the template or archetype of the player.

o Benefits: A particular conversion method encapsulates the exact data we require in

a script, only needing minor changes to add new components to add complexity or

new behaviors to the entity.

• PlayerMovementSystem: (Figure 33.B)

o Functionality: The PlayerMovementSystem manages the movement logic and

behavior of the player entity. It processes user input and updates the player's position

and rotation accordingly.

o Benefits: We can efficiently handle player input and movement calculations by

dedicating a system to player movement. This enables specific control and the ease

of adding new features like sprinting directly onto the system without rethinking the

data layout.

Creating the enemies was just as easy as creating the player character. The only difference is

that the enemies were created at runtime, making the need to set the prefab correctly. The

collision system was manually created, leading to bullets checking collisions with enemies and

enemies checking collisions with bullets doing the work twice. This happens as there is no proper

way of managing entities from the components without creating overheads, making it more

optimal to search in one, free the Transform data and then repeat in the other.

Figure 34: Enemy processing relationship

D

E F

Comparing OOP and DOP for video games
Description and Implementation

 - 53 -

• EnemyAuthoring: (Figure 34.A)

o Logic: The EnemyAuthoring script handles the conversion of enemy entities, allowing

designers to define attributes and properties specific to enemy characters.

o Benefits: A particular conversion method encapsulates the exact data we require in

a script, only needing minor changes to create multiple enemies that could be linked

with bullets if needed. This adds complexity and needs to be manually handled by

the developers to avoid losing performance.

• EnemySpawnSystem: (Figure 34.B)

o Functionality: The EnemySpawnSystem spawns enemy entities based on predefined

criteria. It utilizes a job system to parallelize and optimize enemy spawn calculations.

o EnemySpawnJob: (Figure 34.C)

Functionality: The EnemySpawnJob is a parallel job system performing enemy

spawn calculations, like the starting position to be in a radius from the player. It

handles the instantiation and initialization of enemy entities.

• EnemyMovementSystem: (Figure 34.D)

o Functionality: The EnemyMovementSystem manages enemy entities' movement logic

and behavior. It updates the position and rotation of enemies based on the player's

position to move toward them.

o EnemyMovementJob: (Figure 34.E)

Functionality: The EnemyMovementJob is a job system that performs the

movement calculations for enemy entities in parallel, utilizing multi-threading for

optimized performance. It also checks if there are any collisions after moving,

updating the health value if needed.

Benefits: Having a specific job for them means adding complexity is easy to find

and add, like having a minimum radius to chase the player. It only needs a

distance calculation and a data value for the radius passed to the system.

o EnemyHealthCheckJob: (Figure 34.F)

Functionality: The EnemyHealthCheckJob is a job system that checks the health

status of enemy entities and handles their destruction when necessary.

Figure 35: Definition relationship

Comparing OOP and DOP for video games
Description and Implementation

 - 54 -

The configuration acts as a singleton definition for all the entities setting one singleton of data

for the player, enemy, and bullets to use. It also defines the prefabs and could specify more data

that should be used across the systems. CountEntities is not an ECS system but a MonoBehaviour

that accesses the World to request information, in this case, the entity count. I expected this to

be rather hard, but the API made it extraordinarily straightforward, and only took 20 minutes to

set everything up.

• ConfigAuthoring: (Figure 35.A)

o Logic: The ConfigAuthoring script creates the game's general configuration settings

and parameters via singletons of data exposed in the editor, as shown in the 5.3.6

section. It provides a centralized location for defining global game settings.

o Benefits: By centralizing the configuration settings, designers can easily add, remove

or update specific data for the entirety of the system’s ecosystem from a single point.

• CountEntities: (Figure 35.B)

o Functionality: The CountEntities script is a utility script that counts the number of

entities in the game world. It provides information about the current entity count for

monitoring and debugging purposes.

o Remarks: The CountEntities script is a classic Unity script (MonoBehaviour) that does

not live in the ECS World. It can still access a small manager to return a query of

entities, and while it cannot interact with them, it can read the length of the query

in this case.

These script divisions and their respective logic, benefits, and functionality demonstrate the

organization and utilization of DOD principles in our game implementation. By separating scripts

based on their responsibilities and leveraging the power of systems, jobs, and authoring

components, we can achieve efficient data processing, improved performance, and maintainable

code structure.

Comparing OOP and DOP for video games
Description and Implementation

 - 55 -

5.3.6. In-Editor view

The development of the bullet hell prototype in Unity still benefits from the in-editor view, just

like with OOD, which provides a convenient and intuitive environment for script management and

customization. The Enemy, Player, and Bullet entities now are containers of data and do not have

any parametrization that is not per-entity managed like the pierce of a bullet which is individually

changing for each bullet entity (Figure 36).

This leaves the containers with the minimum needed

information and lets the main configuration handle the

complexity they can individually have with all the

parameters and references needed (Figure 37). While

most of the serialized parameters are blittable data,

some references prefabs. When the Authoring

component gets executed, these prefabs are converted

to entities, stripping any references and extra data it may

have by default or creating a cloned entity of the given

GameObject if requested, creating a twin entity that will

share some components like its Transform.

It is much less convoluted along the hierarchy (Figure

38) as it only requires data containers that are then

processed into the natural hierarchy, which only exists at

runtime (Figure 39).

Figure 39 shows the Entity Hierarchy, which shows how

each container's conversion ended up at runtime

(marked in yellow on the left). Two blue entities (the

hexagon shape icons) represent the Bullet and Enemy

Prefabs, a particular type in ECS, as they cannot be used

as Bullet or Enemy. However, they are just archetype

templates to copy from when required. Apart from them,

Figure 36: Authoring components

Figure 37: Configuration authoring

Figure 38: Basic Unity hierarchy

Comparing OOP and DOP for video games
Description and Implementation

 - 56 -

we can see a trail of different Unity.X where X is a system

that Unity already defines for us and some other systems

like the Scene.DOP.EnemyMovementSystem is one of

the systems defined for the prototype’s purpose directly.

They act as singletons of the systems, holding the

queries they will manage and any data that may be

intrinsic to them.

Other important menus the ECS package allows are the

Components, Archetypes, and System windows, which

help see how the internal conversions and processes

have worked.

The Components window lets us see all the components currently in the project (merging all the

World) and shows their internal type and other helpful information like the size, alignment, or

component type. Figure 40 shows the Pierce component, an int saved in 4B of alignment and

size.

Figure 39: Entities Hierarchy window

Figure 40: Components window and Pierce inspector

Comparing OOP and DOP for video games
Description and Implementation

 - 57 -

Like the Component window, Archetype shows the components of an entity group, as shown in

Figure 28. This window shows the memory side letting the user see the weight of their entity in

the chunk as it is a limiting factor. Figure 41 shows the Bullet Archetype, which weighs 772B in

memory, making only 20 bullets available per chunk (16K size). Most of the components have

been added by Unity to render the entity correctly. However, there are some specific optimizations

available to define, like the TransformUsageFlags, which let the programmer choose how the

entity will be created between None (no need for Transform), Renderable (needs to be rendered

but will not be moving so only LocalToWorld) or Dynamic (needs to be rendered and moved so

both LocalTransform and LocalToWorld) among other options [108].

Lastly is the Systems window, which shows the running systems, their data queries, and any

internal data they may have while executing every frame (Figure 42). Most systems are

managed by Unity and are grouped into different sections to order them. The user-created

systems can subscribe to those groups so they are updated together just like they can specify to

be updated before or after other systems.

Figure 41: Archetype window and Bullet inspector

Comparing OOP and DOP for video games
Description and Implementation

 - 58 -

Together, these tools help identify problems and memory specifications to improve and create

better data layouts for the entities. Due to the packages being released on June 2023 [109], it

still has bugs and problems to solve and implement. However, it also has a very active community,

and developers are involved in making ECS something that genuinely shapes the future of video

games and is more widely used by the community [110].

Figure 42: System window

Comparing OOP and DOP for video games
Economic Study

 - 59 -

6. Economic Study

In addition to exploring the technical aspects and performance implications of OOD and DOD in

game development, this research project aims to conduct an economic study to evaluate the

costs associated with adopting these design paradigms. One of the key factors influencing the

economic aspects is the number of hours invested in implementing OOD and DOD approaches.

Quantifying the time spent on each design paradigm makes it possible to estimate the labor costs

incurred during the development process. Additionally, considering the mean salary of a

programmer, the economic study will further analyze the financial implications of implementing

OOD and DOD in game development, shedding light on the potential economic advantages or

drawbacks of each approach.

The datasets of the time invested in each script, paradigm, and section can be seen in Appendix

A, and a visual showcase of the data can be seen in Annex D.

6.1. Cost analysis

The comparative analysis of the time invested in both paradigms shows that OOD and DOD had

similar times to be developed. However, it was not fully developed as the project was built in

OOD and then transformed into DOD.

I have measured the time investments in OOD and DOD for the project. The OOD approach

required 984 minutes (16 hours and 24 minutes), while the transition to DOD took 837 minutes

(13 hours and 57 minutes). These time measurements form the basis for estimating the labor

costs associated with each approach.

Estimating the costs based on the standard salaries of video game programmers provides further

insights into the economic implications. Let us consider a mean salary of €15 per hour for video

game programmers as an estimate from the Spanish market [111] [112] [113]. Using this value,

we can calculate the estimated labor costs for implementing the project, as shown in Table 5.

\ € Cost Hours Invested Cost per hour

OOD 246 16,4 15

DOD 209,25 13,95 15

Table 5: Costs of the project by hours

Comparing OOP and DOP for video games
Economic Study

 - 60 -

Recognizing that these cost estimates only reflect the labor costs associated with the given time

investments is important. The transformation of an OOD project to DOD would involve additional

efforts that should be considered, such as understanding DOD principles, refactoring code, and

optimizing data layout. These factors may contribute to increased development time and potential

additional costs. These additional costs also depend on the project size. In contrast, a smaller

project may be easier to transform, they may not need the DOD benefits as much as a more

extensive project, but they will have more work to do to transform their data layouts and script

relationships. One key of the transformation is the algorithms; they stay the same from OOD to

DOD, which eases one of the conversion problems.

Considering that, and as discussed in the Future Work section, it would be interesting to see

how a more extensive project is transformed and how one is created from the ground up like the

OOD was to properly compare if this data can be extrapolated to them too.

Regarding the time required to learn the DOD paradigm and its framework, we can estimate,

from creating this prototype, that it would take around 120 hours to learn about this paradigm.

This is a skewed value as I had prior knowledge of the subject. For someone completely new to

the paradigm who wants to learn and build, it could take between 90 and 180 hours to become

literate enough to develop in Unity's framework. To fully understand the underlying concepts of

DOD, it could take around 300 hours.

Learning the DOD framework is no different from learning OOD in a career. OOD is studied from

the first year and appropriately taught in the second year [53], with students learning by doing

over time. By the end of their career, they have a deep on-field knowledge of it. The 300 hours

needed to learn DOD would be equivalent to two 6 ECTS subjects [114], similar to the time

dedicated explicitly to OOD throughout a career.

This lack of university knowledge is extrapolated to another challenge; finding programmers

accustomed to the DOD framework or Unity's ECS framework [101]. It makes it challenging to

find someone to build this type of project from the start or have someone to teach the team.

However, it is a valuable skill that may become more in demand shortly. While the mindset

required for this framework may not be for everyone, it is an exciting knowledge to have and to

then apply to classic OOD systems and also to stand out from many other programmers.

Comparing OOP and DOP for video games
Results

 - 61 -

7. Results

7.1. Prototype review

As part of this research project comparing Data-Oriented Design (DOD) and Object-Oriented

Design (OOD) in Unity game development, I created a prototype to demonstrate the practical

implementation and performance differences between the two paradigms. The prototype is a

characteristic idiosyncrasy of bullet hell game bases. It features a top-down orthographic

perspective where enemies surround the player as it tries to shoot them away to open paths

(Figure 43).

Let us look at the prototype and provide a general review of its design and performance.

The prototype was a double one, each using a different paradigm, OOD and DOD, to compare

their effectiveness and trade-offs. The OOD version followed traditional object-oriented practices,

with scripts organized around class hierarchies and encapsulated behavior. On the other hand,

the DOD version utilized the Entity Component System (ECS) approach, leveraging Unity's Burst

compiler and Jobs package for efficient data processing and parallelization.

In terms of gameplay, the prototype successfully captured the essence of a bullet hell game. The

player controlled a simple player who moves and shoots on demand to move across the enemy

forces.

Figure 43: OOD Prototype look

Comparing OOP and DOP for video games
Results

 - 62 -

The prototype does not implement all the necessary or usual sections of bullet hell games but

was designed with those in mind so it could easily be expanded and built upon without fully

understanding the project’s complexity (Figure 44).

The OOD version has more graphical features like a crosshair for aiming and some positional

help, and its bullets have particle systems instead of just plain objects. These could not be

implemented in the DOD version due to the project expanding multiple ECS versions, which

changed the structure and API, creating a need to rebuild the scripts until the full release on June

2023, when the final prototype was finished. While the package is production-ready, animations,

particles, and shapes like the crosshair are not yet supported, making the DOD project look plain

and simple (Figure 45).

Figure 44: Showcasing of some bullet patterns heading for the enemies

Figure 45: Comparison of players. OOD on the left, DOD on the right

Comparing OOP and DOP for video games
Results

 - 63 -

Both projects were tested by creating bullets, spawning enemies, and checking the collisions.

This was done on a 1920x1080@60Hz monitor, a GPU Nvidia GeForce RTX 2060, 6GB of VRAM,

and 15GB of RAM with a CPU Intel® Core ™ i7-10750H CPU @ 2.60Hz with 12 cores, and the

project was compiled not to have editor performance interfere with the testing. An example test

can be seen in Figure 46 and Figure 47 for OOD and DOD, respectively.

Figure 46: OOD runtime performance

Figure 47: DOD runtime performance

In the subsequent sections of this research report, we will delve into the specific results and draw

conclusions based on the performance analysis and feedback gathered during the prototype

development.

More project images can be found in Annex E; the project files can be linked in Appendix B.

Comparing OOP and DOP for video games
Results

 - 64 -

7.2. Comparative analysis

Four tests have been performed over two builds, one in each paradigm. These tests have been a

bullet stress test, an enemy stress test, and a memory usage for each. All tests have been

recorded with only the builds open, and the Unity profiler to record the data through some clutter

on the RAM and CPU could not be avoided due to the lack of a proper benchmarking test machine.

7.2.1. Bullet stress test

The first test was done by calculating the mean Frames per Second (FPS) along 100 frames

running with a given number of bullets. The complete datasets can be seen in Appendix A.

FPS is erratic, and calculating the mean was not easy, leading to only one result related to FPS

(Figure 48). Since FPS is a metric calculated as 1000/milliseconds (ms), with ms being the time

to execute the scripts, the tests moved to be

ms dependent as the Unity profiler also

provided it.

Even when stating that the method of

comparison will change, we can see a clear

pattern in the graph which is enhanced

when seeing the ms comparisons in Figure

49. To put the graphs into perspective,

~16ms is 60fps, an acceptable rate for

most video games, and ~30ms is 30fps,

which is the test’s goal. There will be two

kinds of tests, managed and real, to

distinguish where the complexity comes

from. Managed only considers the ms

resultant from managed code; the code I

have created for the project, while real, will

consider all ms from the rendering,

lighting, and everything happening in the

scene.

Figure 48: Frames per second as the
number of bullets increases

Figure 49: ms as the number of bullets
increases for managed scripts

Comparing OOP and DOP for video games
Results

 - 65 -

We can see a trend in both implementations as the number of bullets increases. While the OOP

implementation does not seem to handle the new bullets well, and the code gets slower, the

number of bullets barely increases. In contrast, the DOD did not reach the goal of 30ms when

the build reached the technical limit, as shown in Figure 50.

We find something similar in the real ms

value: OOP looks like a logarithmic

function, and DOD is more linear. When

looking at the profiler, there were

rendering spikes as more bullets were

created, and, in the DOD case, it was a

limiting factor as follow-up results

comparing the enemies will delve into.

As someone with some knowledge in this

area, I tried to make it as good as possible,

but some concepts still needed

improvement. I decided to share the

prototype with the ECS community and

asked for their feedback. One of the

developers noticed that one of the DOD

jobs needed to be Burst Compiled. It was

a simple change that only required

switching to a different compiler. However,

this change had a massive impact on the

performance.

Figure 51 shows the new build, DOD_Bursted, which is the DOD version with the changes made

to the mentioned job. The performance skyrocketed, and the test was only stopped because, like

previously, other parts of the frame dragged the performance down. This can be fully seen in

Figure 52, which had all three versions reach the target of 30ms (30fps). When they reached

the mark, OOD had ~2900, DOD had ~13000, and the new version had ~70000 bullets gaining

a substantial quantity of bullets comparing versions.

Figure 50: ms as the number of bullets
increases for the whole frame

Figure 51: ms as the number of bullets increases
for the managed scripts with new version

Comparing OOP and DOP for video games
Results

 - 66 -

Then came the memory tests over the actual build performance shown in Figure 52. They are

taken from Unity’s profiler, which has a memory section specific to OOD and DOD.

Figure 53 shows that DOD has a linear data allocation as more memory is reserved to handle

the increasing amount of bullet chunks since, as seen in Figure 41, they can only hold 20 each,

so creating more bullets should and does have a linear increase. Even when the memory allocated

is equal, the number of bullets managed is over 20 times the amount from the OOD version.

These tests were repeated with the enemies as their behaviors are less complex in OOD and DOD

implementations. In this case, the DOD_Bursted build did not differ from the original DOD since

the changes were done on one of the bullet’s jobs, so it has been removed for the following

graphs.

Figure 53: MB of data allocated as the number of bullets increases

Figure 52: Final results for bullets and in-game times

Comparing OOP and DOP for video games
Results

 - 67 -

7.2.2. Enemy stress test

Due to the data disparity between the two approaches, two bullet axis have been used, one for

each implementation.

Figure 54 shows how DOD reached the

limit once again on the managed scripts

before it could reach the 30ms cost that

was aimed to, while the OOD approach

reached ~15000 enemies. This is more

than 100 times the enemy amount when

performance matched.

Outside the managed scripts and in the

actual game environment, things did not

change much but became closer.

Both paradigms reached the 30 ms goal

but with wildly different results this time.

DOD had ~30 times the amount of bullets

when it reached the 30ms mark (Figure

55). Both enemy logics were the same for

both paradigms but still had different

results regarding quantity.

Regarding the memory checks for the enemies, Figure 56 shows a similar result to Figure 53,

with DOD being linear as bullets were created and OOD needing much extra memory to handle

a fraction of what DOD was handling at that time. Once again, the DOD approach stays coherent

with its bases as data is created and managed according to the needs trying to minimize wasted

data at all costs.

Figure 54: ms change over managed scripts
as enemies increase

Figure 55: ms change over the full frame
as enemies increase

Comparing OOP and DOP for video games
Results

 - 68 -

Regarding all tests and their collection, Annex F offers screenshots of Unity’s profiler and how

data was acquired.

Figure 56: MB of data allocated as the number of enemies increases

Comparing OOP and DOP for video games
Validation Threats

 - 69 -

8. Validation Threats

During this research project, several potential validation threats should be acknowledged. These

threats may have introduced biases or limitations impacting the findings' validity and

generalizability. Recognizing and addressing these threats to minimize them in future works is

essential.

• Prototype Representativeness: The prototype game developed for this project may

only partially represent the complexities and intricacies of real-world video game

development. The chosen use cases or game mechanics may not capture the diverse

scenarios encountered in actual game projects. Further research should be done to create

and accurately represent the real-world scenario.

• Prototype Bias: The choice of prototypes developed for the comparison may introduce

a bias towards a particular paradigm. If the goal prototype favored one of the two

paradigms more, it would create a disparity in the data. Further research on different

video game types is needed to ensure a fair comparison.

• Time/Lenght Constraints: The project's time and length constraints may limit the

depth and breadth of the analysis. The research may not have sufficient time to explore

all possible aspects and variations of OOD and DOD implementation in video game

development, and all insights may not have been shown due to the reporting limit.

Extensive research without the constraints or with larger ones would give more leeway

to tackle a bigger surrounding both paradigms.

• Technical Limitations: Due to the technology implemented being so new, it is not easy

to assess the quality of the implementation. This needs to be tackled by making another

comparison when the technology is fully stable and has all the essential components

necessary to develop a prototype that can match the original implementation.

• Scale and Complexity of Prototypes: The scale and complexity of the prototypes

developed for the project may impact the generalizability of the findings. Due to the

relatively small and straightforward prototypes, the challenges and benefits associated

with OOD and DOD may still need to be fully realized. Conversely, if the prototypes were

overly complex and ambitious, it may introduce additional confounding factors that make

it difficult to isolate the effects of the design paradigms. Mitigating this threat involves

balancing prototype scale and complexity that aligns with real-world game development

scenarios.

Comparing OOP and DOP for video games
Validation Threats

 - 70 -

• Expertise and Skill Level Variability: The expertise and skill level acquired when

implementing OOD and DOD can introduce variability and potential biases in the

outcomes. Due to needing more knowledge about DOD to produce a matching prototype,

the result may have required to be more balanced due to getting the scoop from more

recent and specific sources than OOD. Before implementing the prototype without expert

help, an extensive course should be done to ensure a matching knowledge ceiling.

• Generalizability of Findings to Different Project Types: The findings and

conclusions drawn from this research project may only be fully generalizable to some

types of video game development projects. The specific characteristics, requirements,

and constraints of the chosen prototypes may limit the applicability of the findings to

other game genres, platforms, or scales.

While most validation threats have been tackled through the process, some may still prevail and

need future works to tackle and specify them correctly, leaving the door open for finer tuning

and creating more knowledge on this subject.

Comparing OOP and DOP for video games
Conclusions

 - 71 -

9. Conclusions

Throughout this research project, we comprehensively analyzed and compared Object-Oriented

Design (OOD) and Data-Oriented Design (DOD) in Unity game development. Our objective was

to explore the strengths and weaknesses of these design paradigms and provide insights into

their applicability and utilities in the gaming industry and the university one.

While OOD did not perform as well as DOD on any of the tests, it offers a friendly and intuitive

approach, making it suitable for projects with moderate complexity and smaller team sizes where

optimization may not be the key focus or a necessity or where the learning costs would be too

high to be considered. On the other hand, DOD shines in situations that require parallel

processing, optimizations, and scalable designs. It proves exceptionally advantageous for games

with massive amounts of entities, intricate gameplay mechanics, and demanding performance

requirements. This is mixed with the surrounding tools Unity provides, like the Job System or the

Burst Compiler, that genuinely takes DOD to another level in performance.

Utilizing OOD and DOD in game development presents its own set of challenges. OOD's emphasis

on abstraction and encapsulation can introduce additional layers of indirection and overhead,

potentially impacting performance in specific scenarios. It requires careful consideration of class

hierarchies and interdependencies while being flexible when the projects are small. While

providing performance benefits, DOD may pose a learning curve for developers accustomed to

traditional OOD practices. It demands a more direct and manual approach to code organization.

It may require a shift in mindset that can require long learning times, hands-on work in the code

directly, which may deter many people from trying, and specific tools not currently expected in

the industry, as OOD has been the prevalent paradigm for universities and the industry.

Successfully transitioning from OOD to DOD requires critical concepts to be grasped and

implemented effectively. Understanding the Entity Component System (ECS) architecture,

utilizing the Jobs system for efficient parallel processing, and optimizing data layout are essential.

Embracing the data-driven mindset and embracing the principles of cache coherency, data-

streamlining, and low-level design is crucial to getting the desired optimization out of DOD.

While the transition did not oppose challenges outside the learning curve of the paradigm, this is

mainly thanks to Unity's easy-to-use API and the abstraction from many inside actions that are

Comparing OOP and DOP for video games
Conclusions

 - 72 -

taken care of by the API directly. This eases the transformation of individual scripts but still

requires work to optimize data layouts or dependencies, among other things.

Migrating an existing project from OOD to DOD incurs certain costs. It involves rewriting and

restructuring code to align with the DOD principles. The complexity of the project, its size, and

the familiarity of the development team with DOD concepts will profoundly influence the

magnitude of the migration effort.

In conclusion, OOD and DOD offer unique advantages and trade-offs in game development. OOD

provides a friendly and flexible approach suitable for beginner to complex projects that may be

manageable. At the same time, DOD excels in optimizing data processing and performance for

demanding game environments. The choice between the two paradigms depends on the specific

needs, constraints of the project, and the prior knowledge of the people involved. Understanding

the specific use cases, challenges, and key concepts involved in transitioning from OOD to DOD

is essential for developers to make informed decisions and reduce the costs of transitioning from

one paradigm to another.

9.1. Future Work

While this research project has shed light on comparing OOD and DOD in Unity game

development, several avenues exist for future exploration and research. These key areas of future

work aim to deepen our understanding and provide further insights into the application of OOD

and DOD in game development, student academia, and industry standards.

Migration on a Large-Scale Project: This research focused on migrating from OOD to DOD

for a prototype project. However, future research should explore the challenges and costs of

migrating large-scale projects from OOD to DOD. Analyzing the impact on development time,

performance optimization, and team coordination over DOD challenges and requirements would

provide valuable insights for teams considering adopting DOD on existing projects.

Cost Analysis of DOD from Project Inception: While this research examined the cost

implications of migrating an existing OOD project to DOD, conducting a cost analysis of

developing a project using DOD from its creation would be valuable to compare if setting a base

of work could lead to time gained in the creation time. This would involve creating a video game

with DOD from the early stages of game development and comparing it to existing projects

developed with OOD.

Comparing OOP and DOP for video games
Conclusions

 - 73 -

Performance Comparison in Different Game Genres: This research project focused on

implementing a bullet hell prototype as a case study. Future work could explore the performance

comparison between OOD and DOD in different game genres which may not seek such

performant solutions, such as endless runners, tower defense, or puzzle-like games, and some

that may require those performant solutions, such as open-world environments, multiplayer

experiences, or physics-intensive simulations. Understanding how game genres and mechanics

interact with OOD and DOD paradigms would provide developers with genre-specific insights.

Developer Learning Curve and Training: As DOD is still a relatively new concept for many

game developers, future research could focus on understanding the learning curve associated

with adopting and learning DOD. Exploring effective training methodologies, educational

resources, and best practices for transitioning from OOD to DOD would facilitate a smoother

adoption process and help developers overcome the initial challenges.

Impact of Student Capabilities on DOD Adoption: Another area of future work is studying

the capabilities and aptitude of students or novice developers in understanding and implementing

DOD concepts. Investigating how students with varying programming knowledge and experience

grasp DOD principles would provide valuable insights into the accessibility and suitability of DOD

as an educational approach in game development curricula. Additionally, exploring the

effectiveness of different instructional methods and techniques for teaching DOD to students

would enhance the educational resources available in this domain.

Evaluation of DOD Tools and Frameworks: As DOD gains traction in game development, the

availability and usability of tools and frameworks that support DOD implementation should

become increasingly important. Future research could assess the effectiveness and efficiency of

existing DOD-oriented tools and frameworks outside Unity's, examining their impact on

development productivity, code quality, and performance optimization.

Comparing OOP and DOP for video games
Conclusions

 - 74 -

9.2. Personal Learnings

This project has been the goal I started being curious about two years ago when I first asked my

teachers for Data Oriented Design a semester after learning about Object Oriented Design. Since

then, I have been curious about it, and it has pushed me to try languages like Rust which are

more data aligned than C++.

Then I learned about Unity’s focus on DOD, and since then, I have been fascinated by the

possibilities and the uses the Unity team has showcased. ECS has been a part of my life since

last year, 2022, and especially 2023, where I have interacted with the community, talked and

learned from them, and soaked in as much knowledge as possible. I feel this is the first step into

a more significant thing that I will grow accustomed to and genuinely love, as I cannot wait for

summertime and do my projects regarding the paradigm used to squeeze the performance out

of every game I make from now on.

I missed some guidance at first as no one had ideas or knowledge about ECS or DOD. It is vital

to have the tools that DOTS provides in video game design, even with engines like Unreal trying

to mask things and do them themselves under the hood. While it comes from my nature and

likes, I think a minimum of knowledge would enhance every game and that the tools that have

helped me the most have been taught mouth to mouth, in talks, and in some specific sources

from the ECS developers like Andrew Parsons’ tweet about learning resources which, while being

published after the learning portion, it gave lots of insides on how things worked [115].

This project had consumed much of my life and provided immeasurable knowledge and pleasure,

like the giggles when the builds were done, and the test were running. Seeing such disparities in

performance, as the ECS team said would happen, felt like a pat on the back for understanding

the concepts of an entirely different paradigm. It exceeded the initial goals as I became curious

about cache allocations and how different definitions affected the performance, bringing a deeper

understanding of Unity and coding.

I am grateful for choosing this research, and I am genuinely thrilled to see how my coding habits

will change in the future.

Comparing OOP and DOP for video games
References

 - 75 -

10. References

[1] R. Chikhani, "The History Of Gaming: An Evolving Community," TechCrunch+, 31
October 2015. [Online]. Available: https://techcrunch.com/2015/10/31/the-history-of-

gaming-an-evolving-community. [Accessed 19 May 2023].

[2] A. Marchand and T. Hennig-Thurau, "Value Creation in the Video Game Industry:

Industry Economics, Consumer Benefits, and Research Opportunities," August 2013.
[Online]. Available:

https://www.researchgate.net/publication/255995598_Value_Creation_in_the_Video_G

ame_Industry_Industry_Economics_Consumer_Benefits_and_Research_Opportunities.

[Accessed 19 May 2023].

[3] A. McAloon, "Breaking down nearly 50 years of video game revenue," Game Developer,
30 January 2019. [Online]. Available:

https://www.gamedeveloper.com/console/breaking-down-nearly-50-years-of-video-

game-revenue. [Accessed 19 May 2023].

[4] G. Koulaxidis and S. Xinogalos, "Improving Mobile Game Performance with Basic

Optimization Techniques in Unity," March 2022. [Online]. Available:
https://www.researchgate.net/publication/359597028_Improving_Mobile_Game_Perfor

mance_with_Basic_Optimization_Techniques_in_Unity. [Accessed 19 May 2023].

[5] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome y D. Poshyvanyk,
«Automatically Discovering, Reporting and Reproducing Android Application Crashes,»

June 3017. [En línea]. Available: https://arxiv.org/abs/1706.01130. [Último acceso: 19

May 2023].

[6] History.com Editors, "Video Game History," History, 17 October 2022. [Online].
Available: https://www.history.com/topics/inventions/history-of-video-games.

[Accessed 19 May 2023].

[7] K. Stuart, "The eight best advances in gaming during the last decade," The Guardian, 6
October 2017. [Online]. Available:

https://www.theguardian.com/technology/2017/oct/06/gaming-advances-decade-

guardian-games-editor-keith-stuart. [Accessed 19 May 2023].

[8] K. Beck, «How video game development has changed over the last decade,» Mashable,

20 October 2019. [En línea]. Available: https://mashable.com/article/video-game-

development-over-the-decade . [Último acceso: 19 May 2023].

[9] M. Toftedahl, "Which are the most commonly used Game Engines?," 30 September 2019.
[Online]. Available: https://www.gamedeveloper.com/production/which-are-the-most-

commonly-used-game-engines-. [Accessed 19 May 2023].

[10] Unreal Engine, "Nanite Virtualized Geometry," 2022. [Online]. Available:

https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-unreal-

engine/. [Accessed 19 May 2023].

[11] K. Henney, "Giving Code a Good Name," 26 July 2017. [Online]. Available:

https://www.slideshare.net/Kevlin/giving-code-a-good-name. [Accessed 19 May 2023].

[12] R. Nystrom, Game Programming Patterns, Genever Benning, 2014.

[13] R. Nystrom, "Design Patterns Revisited," 2021. [Online]. Available:

http://gameprogrammingpatterns.com/design-patterns-revisited.html. [Accessed 19

May 2023].

Comparing OOP and DOP for video games
References

 - 76 -

[14] R. Fabian, Data-oriented design: software engineering for limited resources and short

schedules, 2018.

[15] N. Llopis, "Data Alignment, Part 1," 06 March 2009. [Online]. Available:

https://www.gamedeveloper.com/programming/data-alignment-part-1. [Accessed 19

May 2023].

[16] N. Llopis, "Data Alignment, Part 2: Objects on The Heap and The Stack," 31 March 2009.
[Online]. Available: https://www.gamedeveloper.com/programming/data-alignment-

part-2-objects-on-the-heap-and-the-stack. [Accessed 19 May 2023].

[17] N. Llopis, "Data-Oriented Design - Now And In The Future," 13 April 2011. [Online].

Available: https://www.gamedeveloper.com/disciplines/sponsored-feature-data-

oriented-design---now-and-in-the-future. [Accessed 19 May 2023].

[18] S. Meyers, "code::dive conference 2014 - Scott Meyers: Cpu Caches and Why You Care,"

code::dive, 2014. [Online]. Available: https://youtu.be/WDIkqP4JbkE. [Accessed 19 May

2023].

[19] R. Joshi, «Data-Oriented Architecture: A Loosely-Coupled Real-Time SOA,» August 2007.

[En línea]. Available: https://community.rti.com/sites/default/files/archive/Data-

Oriented_Architecture.pdf. [Último acceso: 19 May 2023].

[20] A. S. Tanenbaum and T. Austin, Structured Computer Organization, Pearson, 2013.

[21] A. S. Tanenbaum and H. Bos, Modern Operating Systems, Pearson, 2015.

[22] W. Faryabi, "Data-oriented Design approach for processor intensive games," 2

September 2018. [Online]. Available: http://hdl.handle.net/11250/2575669. [Accessed

19 May 2023].

[23] Unity, "Entity Component System," Unity Docs, 19 October 2020. [Online]. Available:
https://docs.unity3d.com/Packages/com.unity.entities@0.11/manual/index.html.

[Accessed 19 May 2023].

[24] Unity, "Harnessing the power of ECS for Unity | Unity at GDC 2023," Unity, 25 April 2023.

[Online]. Available: https://youtu.be/WSrvUynsd34?t=341. [Accessed 19 May 2023].

[25] Unity, "How to create, launch, and manage multiplayer games with Unity | Unity at GDC
2023," Unity, 11 April 2023. [Online]. Available: https://youtu.be/h6fbgd-rzbE.

[Accessed 19 May 2023].

[26] Unity, "Unity at devcom with IXION || Unity," Unity, August 2022. [Online]. Available:

https://www.youtube.com/watch?v=SjNE8BplBEk. [Accessed 19 May 2023].

[27] Unity, "JellyCar Worlds | Creator Spotlight | Made With Unity," Unity, December 2022.
[Online]. Available: https://www.twitch.tv/videos/1668085041. [Accessed 19 May

2023].

[28] Unity, "Creator Spotlight: V Rising | Made With Unity," Unity, June 2022. [Online].

Available: https://www.twitch.tv/videos/1517796421. [Accessed 19 May 2023].

[29] Unity, "The path to leveraging DOTS in production | Unity at GDC 2022," Unity, 2 April

2022. [Online]. Available: https://youtu.be/KJOhIhOv2EI. [Accessed 19 May 2023].

[30] L. Gibert, "DOTS development status and next milestones - June 2023," Unity , 01 June
2023. [Online]. Available: https://forum.unity.com/threads/dots-development-status-

and-next-milestones-june-2023.1443250/. [Accessed 01 June 2023].

[31] Unity, "ECS for Small Things," Unity, 23 March 2018. [Online]. Available:

https://youtu.be/EWVU6cFdmr0?t=1385. [Accessed 19 May 2023].

Comparing OOP and DOP for video games
References

 - 77 -

[32] P. Hu and K. Zhu, "Strategy research on the performance optimization of 3D mobile
game development based on Unity," Journal of Chemical and Pharmaceutical Research,
vol. 6, no. 3, pp. 785-791, 2014.

[33] Unity, L. Gilbert and J. Valenzuela, "Unity LTS 2022: Introduction to DOTS," Unity, 22
June 2023. [Online]. Available:

https://www.youtube.com/live/oUQapNQgpRI?feature=share&t=508. [Accessed 23

June 2023].

[34] Unity, L. Gilbert and T. Johansson, "Unity LTS 2022: Deliver a seamless multiplayer
experience," Unity, 22 June 2023. [Online]. Available:

https://www.youtube.com/live/oUQapNQgpRI?feature=share&t=9819. [Accessed 23

June 2023].

[35] N. Collman, "MAKU: A Code Generator for Bullet Hell Games," 2014.

[36] Touhou Wiki, "The Shattered Sky/Spell Cards/Last Word," Touhou Wiki, 10 January
2022. [Online]. Available:

https://en.touhouwiki.net/wiki/The_Shattered_Sky/Spell_Cards/Last_Word. [Accessed

23 June 2023].

[37] S. Johnson, "Dodonpachi," Hardcore Gaming 101, 20 February 2015. [Online]. Available:

http://www.hardcoregaming101.net/dodonpachi/. [Accessed 23 June 2023].

[38] Touhou Wiki, "Touhou Project," Touhou Wiki, 11 May 2023. [Online]. Available:

https://en.touhouwiki.net/wiki/Touhou_Wiki. [Accessed 23 June 2023].

[39] A. C. Kay, "The Early History Of Smalltalk," ACM SIGPLAN Notices, vol. 28, no. 3, pp. 69-

95, 01 March 1993.

[40] A. Kay, "The Power Of The Context," Viewpoints Research Institute, California, 2004.

[41] H. Hsu, "48 YEARS OF SMALLTALK HISTORY AT CHM," Computer History Museum, 2022.

[Online]. Available: https://computerhistory.org/blog/introducing-the-smalltalk-zoo-48-

years-of-smalltalk-history-at-chm/. [Accessed 31 May 2023].

[42] ORACLE, "Chapter 4. Types, Values, and Variables," ORACLE, 03 March 2023. [Online].

Available: https://docs.oracle.com/javase/specs/jls/se20/html/jls-4.html#jls-4.3.1.

[Accessed 31 May 2023].

[43] ORACLE, "Autoboxing and Unboxing," ORACLE, 2022. [Online]. Available:
https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html. [Accessed 31 May

2023].

[44] Microsoft, "https://learn.microsoft.com/en-
us/dotnet/csharp/fundamentals/tutorials/oop," Microsoft, 01 March 2023. [Online].

Available: https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/tutorials/oop.

[Accessed 31 May 2023].

[45] B. Stroustrup, A Tour of C++ (Second edition), Addison-Wesley, 2018.

[46] B. Stroustrup, "The C++ Programming Language," 19 October 2021. [Online]. Available:

https://stroustrup.com/C++.html#guidelines. [Accessed 31 May 2023].

[47] G. v. Rossum, Python Programming Language, USENIX, 2007.

[48] R. C. Martin, Designing object-oriented C++ applications: using the Booch method,

1995.

[49] R. C. Martin, Agile Software Development: Principles, Patterns, and Practices, United

States: Prentice Hall PTR, 2003.

[50] C. Larman, Applying UML and Patterns: An Introduction to Object-oriented Analysis and

Design and the Unified Process, Prentice Hall Professional, 2002.

Comparing OOP and DOP for video games
References

 - 78 -

[51] cplusplus.com, "C++ Language Polymorphism," cplusplus, 2022. [Online]. Available:

https://legacy.cplusplus.com/doc/tutorial/polymorphism/. [Accessed 19 May 2023].

[52] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, Pearson Education, 1994.

[53] ANECA, Libro Blanco: Titulo de Grado en Ingenieria Informatica, ANECA, 2004.

[54] N. Tatarchuk, "A Flexible, On-the-Fly Object Manager," in Game Programming Gems 4,

Charles River Media, 2004, pp. 103-110.

[55] W. B. Frakes and R. Anguswamy, "A Study of reusability, complexity, and reuse design
principles," International Symposium on Empirical Software Engineering and
Measurement, vol. 12, pp. 161-164, 2012.

[56] T. Sweeney, "The next mainstream programming language: a game developer's

perspective," ACM SIGPLAN Notices, vol. 41, no. 1, p. 269, 2006.

[57] M. Leair and S. Pande, "Optimizing dynamic dispatches through type invariant region
analysis," Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 2913, pp. 459-468, 2003.

[58] T. Yiyu, A. S. Fong y Y. Xiaojian, «Architectural solution to object-oriented
programming,» Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4697, pp. 387-398,

2007.

[59] Unity, "Understand data-oriented design," Unity Learn, 02 March 2023. [Online].

Available: https://learn.unity.com/tutorial/part-1-understand-data-oriented-design.

[Accessed 02 June 2023].

[60] J. Boer, "Object-Oriented Programming and Design Techniques," in Game Programming
Gems 1, Charles River Media, 2000, pp. 8-19.

[61] N. H., D. Armstrong and K. Nelson, "Patterns of transition: The shift from traditional to
object-oriented development," Journal of Management Information Systems, vol. 25, no.

4, pp. 271-298, 2008.

[62] J. Blow, "Data-Oriented Demo: SOA, composition," 2015.

[63] N. Llopis, "Data-Oriented Design (Or Why You Might Be Shooting Yourself in The Foot

With OOP)," 4 December 2009. [Online]. Available: https://gamesfromwithin.com/data-

oriented-design. [Accessed 31 May 2023].

[64] M. Acton, "Data-Oriented Design and C++," in CppCon, 2014.

[65] Unity, "We’re joining Unity to help democratize data-oriented programming," Unity, 8
November 2017. [Online]. Available: https://blog.unity.com/community/were-joining-

unity-to-help-democratize-data-oriented-programming. [Accessed 31 May 2023].

[66] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice Hall, 1988.

[67] A. Alexandrescu, Modern C++ Design: Generic Programming and Design Patterns

Applied, Addison-Wesley Professional, 2001.

[68] D. Kusswurm, Modern Parallel Programming with C++ and Assembly Language: X86

SIMD Development Using AVX, AVX2, and AVX-512, Apress, 2022.

[69] A. Fredriksson, "SIMD at Insomniac Games," in Game Developers Conference, 2015.

[70] M. Scarpino, "Crunching Numbers with AVX and AVX2," Code Project, 2 April 2016.
[Online]. Available: https://www.codeproject.com/Articles/874396/Crunching-Numbers-

with-AVX-and-AVX. [Accessed 31 May 2023].

Comparing OOP and DOP for video games
References

 - 79 -

[71] D.-o. d. s. e. f. l. r. a. s. schedules, Data-oriented design: software engineering for limited

resources and short schedules, Manning Publications Co., 2022.

[72] U. Drepper, "What Every Programmer Should Know About Memory," in

Drepper2007WhatEP, 2007.

[73] N. Ivanova and D. Charrieras, "Emergence in video game production: Video game

engines as technical individuals," Social Science Information, vol. 55, no. 3, pp. 337-356,

2016.

[74] T. A. Fontana, S. F. Almeida, R. Netto, V. S. Livramento, C. Guth, L. L. Pilla and J. L. A.
Güntzel, "Exploiting cache locality to speedup register clustering," in SBCCI '17, Brazil,

2017.

[75] S. Rabin, "The Magic of Data-Driven Design," in Game Programming Gems 1, Charles

River Media, 2000, pp. 3-7.

[76] T. Mironov, L. Motaylenko, D. Andreev, I. Antonov and M. Aristov, "Comparison of
object-oriented programming and data-oriented design for implementing trading

strategies backtester," Vide. Tehnologija. Resursi - Environment, Technology,
Resources, vol. 2, pp. 124-130, 2021.

[77] D. Wingqvist, F. Wickstrom and S. Memeti, "Evaluating the performance of object-

oriented and data-oriented design with multi-threading in game development," 2022
IEEE Games, Entertainment, Media Conference, GEM 2022, 2022.

[78] K. Fedoseev, N. Askarbekuly, E. Uzbekova and M. Mazzara, "Application of Data-Oriented

Design in Game Development," Journal of Physics: Conference Series, vol. 1694, no. 1,

pp. 12-35, January 2020.

[79] I. Seah and L. White, "Havok Physics for Unity is now supported for production," Unity
Blog, 19 December 2022. [Online]. Available: https://blog.unity.com/engine-

platform/havok-physics-now-supported-for-production. [Accessed 25 May 2023].

[80] R. Barringer, "Data-oriented rigid body physics," 17 June 2017. [Online]. Available:

https://rasmusbarr.github.io/blog/dod-physics.html. [Accessed 25 May 2023].

[81] Unity, "Entity Component System - Unity Learn," Unity Learn, 02 May 2023. [Online].
Available: https://learn.unity.com/tutorial/entity-component-system#. [Accessed 25

May 2023].

[82] RegularX, "Unreal Object Oriented Programming," 23 June 2007. [Online]. Available:

https://beyondunrealwiki.github.io/pages/unreal-object-oriented-prog.html. [Accessed

25 May 2023].

[83] Unity, "Unity’s Data-Oriented Technology Stack (DOTS)," 2023. [Online]. Available:

https://unity.com/dots. [Accessed 25 May 2023].

[84] Unity , "Data design - Unity Learn," 03 April 2023. [Online]. Available: https://connect-

prd-cdn.unity.com/20210202/3b84b9c2-d8b1-465e-88b9-

41dcc11e205b/Breakout%20Data%20Worksheet.pdf. [Accessed 02 June 2023].

[85] Unity, "Implementation fundamentals - Unity Learn," Unity, 02 March 2023. [Online].

Available: https://learn.unity.com/tutorial/part-3-1-implementation-fundamentals.

[Accessed 02 June 2023].

[86] J. D. Bayliss, "Computer," Computer, vol. 55, no. 5, pp. 31-38, 2022.

[87] Unity Docs, "About Burst," 22 May 2023. [Online]. Available:

https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/index.html.

[Accessed 25 May 2023].

Comparing OOP and DOP for video games
References

 - 80 -

[88] T. Jones, "Raising your game with Burst 1.7," Unity, 14 May 2022. [Online]. Available:
https://blog.unity.com/engine-platform/raising-your-game-with-burst-1-7. [Accessed 02

June 2023].

[89] P. Ananga and I. K. Biney, "COMPARING FACE-TO-FACE AND ONLINE TEACHING AND
LEARNING IN HIGHER EDUCATION," MIER Journal of Educational Studies, Trends &
Practices, vol. 7, no. 2, pp. 165-179, November 2017.

[90] I. Tort-Ausina, J. Gómez-Tejedor, J. Molina-Mateo, J. Riera, J. Meseguer-Dueñas, R.

Martín-Cabezuelo and A. Vidaurre, "Results Of a University Experience, Comparing Face-
To-Face, Online and Hybrid Teaching in a Context of SARSCOV19," in EDULEARN22
Conference, Mallorca, 2022.

[91] J. Petchamé, I. Iriondo, E. Villegas, D. Riu and D. Fonseca, "Comparing Face-to-Face,
Emergency Remote Teaching and Smart Classroom: A Qualitative Exploratory Research

Based on Students’ Experience during the COVID-19 Pandemic," Sustainability, vol. 13,

2021.

[92] Unity Docs, "Conversion Workflow," 6 July 2022. [Online]. Available:

https://docs.unity3d.com/Packages/com.unity.entities@0.50/manual/conversion.html.

[Accessed 25 May 2023].

[93] Unity Docs, "Understand the ECS workflow," 25 May 2023. [Online]. Available:
https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/ecs-workflow-

intro.html. [Accessed 2023 May 2023].

[94] James, "DanmakU - Bullet Hell Development Kit," 2015.

[95] "Bagoum", "Danmokou Documentation," 2023.

[96] V. R. Basili, G. Caldiera and H. D. Rombach, "The Goal Question Metric Approach," in

Basili1994TheGQ, 1994.

[97] G. Travassos and M. Barros, "Contributions of In Virtuo and In Silico Experiments for the
Future of Empirical Studies in Software Engineering Contributions of In Virtuo and In

Silico Experiments for the Future of Empirical Studies in Software Engineering," The
Future of Empirical Studies in Software Engineering: Proceedings of the ESEIW 2003
Workshop on Empirical Stuides in Software Engineering, WSESE 2003, vol. 2, p. 117,

2004.

[98] J. Dunstan, "How to Write Faster Code Than 90% of Programmers," 8 May 2017.

[Online]. Available: https://www.jacksondunstan.com/articles/3860. [Accessed 23 June

2023].

[99] J. Nielson, "Nova Drift Dev Deep Dive: Dynamic Waves!," Nova Drift Blog, 18 October

2021. [Online]. Available: https://blog.novadrift.io/nova-drift-dev-deep-dive-dynamic-

waves/. [Accessed 2023 06 23].

[100] Odin, "Odin Inspector: Improve your workflow in Unity," Odin, 2023. [Online]. Available:

https://odininspector.com/. [Accessed 23 June 2023].

[101] Turbo Makes Games, "https://www.youtube.com/watch?v=Bz24Jp30nkM&t," Turbo

Makes Games, 23 June 2023. [Online]. Available:

https://www.youtube.com/watch?v=Bz24Jp30nkM&t. [Accessed 23 June 2023].

[102] Unity, "Unity Entities package 1.0 - Entities and Components," Unity, 28 September
2022. [Online]. Available: https://www.youtube.com/watch?v=jzCEzNoztzM. [Accessed

25 June 2023].

[103] Unity, "Use enableable components," Unity, 21 June 2023. [Online]. Available:
https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/components-

enableable-use.html. [Accessed 25 June 2023].

Comparing OOP and DOP for video games
References

 - 81 -

[104] Unity, "Burst User Guide," Unity, 2020. [Online]. Available:
https://docs.unity3d.com/Packages/com.unity.burst@1.2/manual/index.html.

[Accessed 25 June 2023].

[105] Unity, "Burst - C#/.NET type support," Unity, 12 June 2023. [Online]. Available:
https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/csharp-type-

support.html. [Accessed 25 June 2023].

[106] Unity, "The Unity Job System," Unity, 28 September 2022. [Online]. Available:

https://www.youtube.com/watch?v=jdW66hA-Qu8. [Accessed 25 June 2023].

[107] Unity, "Physics project setup," Unity, 21 June 2023. [Online]. Available:

https://docs.unity3d.com/Packages/com.unity.physics@1.0/manual/getting-started-

installation.html. [Accessed 25 June 2023].

[108] Unity, "Enum TransformUsageFlags," Unity, 21 June 2023. [Online]. Available:

https://docs.unity3d.com/Packages/com.unity.entities@1.0/api/Unity.Entities.Transfor

mUsageFlags.html. [Accessed 25 June 2023].

[109] Unity, "Unity 2022 LTS is here! | Unity," Unity, 1 June 2023. [Online]. Available:

https://www.youtube.com/watch?v=5OgvVVQyur8&t. [Accessed 25 June 2023].

[110] L. Gibert, "DOTS: get in touch with the teams behind it!," Unity, 09 May 2023. [Online].

Available: https://forum.unity.com/threads/dots-get-in-touch-with-the-teams-behind-

it.1434796/. [Accessed 25 June 2023].

[111] PayScale, «Average Mid-Career Software Engineer / Developer / Programmer Salary in

Spain,» PayScale, 2023. [En línea]. Available:
https://www.payscale.com/research/ES/Job=Software_Engineer_%2F_Developer_%2F

_Programmer/Salary/0749c27a/Mid-Career. [Último acceso: 25 June 2023].

[112] Hello Astra, "Average Software Developer salary in 2023 in the EU," Hello Astra, 30

January 2023. [Online]. Available: https://helloastra.com/blog/article/average-software-

developer-salary-in-2023-in-the-eu. [Accessed 25 June 2023].

[113] E. Kononchuk, "Average Software Developer Salaries: Rates Comparison by Country,"

Qubit Labs, 09 May 2023. [Online]. Available: https://qubit-labs.com/average-software-

developer-salaries-salary-comparison-country/. [Accessed 25 June 2023].

[114] Y. S. a. C. European Commission and Directorate-General for Education, ECTS users'

guide 2015, Publications Office, 2017.

[115] A. Parsons, "My current top ten for all things DOTS & ECS," Twitter, 11 May 2023.

[Online]. Available:
https://twitter.com/MrAndyPuppy/status/1656329064242884610?s=20. [Accessed 25

June 2023].

[116] A. Hamlett, "WakaTime," WakaTime, September 2022. [Online]. Available:

https://wakatime.com/. [Accessed 23 June 2023].

[117] WakaTime and D. Muñoz, "Test_ECS_1_08," WakaTime, 23 June 2023. [Online].

Available: https://wakatime.com/@66a229f4-c9eb-4223-9123-

d748b55e5ecb/projects/egbtvvxfbl. [Accessed 23 June 2023].

[118] Wikipedia, "Touhou Project," 06 June 2023. [Online]. Available:

https://en.wikipedia.org/wiki/Touhou_Project. [Accessed 23 June 2023].

Comparing OOP and DOP for video games
Appendix

 - 82 -

11. Appendix

11.1. Appendix A

11.1.1. Datasets

The complete datasets can be found in this link.

They are divided into managed and real. This separation is related to which ms is being evaluated.

Managed means only the scripts created by the programmer are considered, seeing the growth

the algorithms and mechanics pose in the project. Real considers everything that needs to

happen, each frame showing the result, which the player sees.

All the data has been taken as a mean from 100 frames running with the amount specified.

An example of the data is Enemies_Managed:

OOD ms DOD ms

0 4 0 4.63

300 6.26 3000 5.91

900 7.98 29000 6.37

2100 10.4 80000 7.24

4200 13.68 200000 8.55

5400 15.03 360000 10.71

8100 19.82 760000 16.62

9900 22.48 1000000 20.27

14400 31.2 - -

OOD and DOD columns mean the number of, in this case, enemies spawned for that paradigm.

The ms columns register the number of ms the, in this case, managed scripts took to run their

calculations.

Apart from these, the time to code each script has been added in the Time_Per_Paradigm file

showing each significant (>1 minute invested) script and its paradigm. This comes from an

extension that tracks the coding time of each file called WakaTime [116]. In the free version,

only the last two weeks of work could be seen, which was circumvented by doing it twice as the

main project took around one month of development and then adding the data manually from

the dashboards [117].

https://usanjorge-my.sharepoint.com/:f:/g/personal/alu_107827_usj_es/EmSfxXekyq1FrbxoRtVzIv8B4k-P6NT3GXqNTjWief3VOg?e=s160z5

Comparing OOP and DOP for video games
Appendix

 - 83 -

11.2. Appendix B

11.2.1. Project files and builds

Due to the project's size, the entire project cannot be directly shared. Instead, it is stored online

in this link, and the builds are stored in this link.

There are two published builds, OOD2 and DOD3.

OOD2 is the Object Oriented version of the prototype.

DOD3 is the Data-Oriented version of the prototype.

Both have a README file explaining how to use and test them.

https://github.com/EspectroRebelde/PFG_DanielMunoz_UnityECSvsObjects
https://usanjorge-my.sharepoint.com/:f:/g/personal/alu_107827_usj_es/EmjnKrTP4ONNpkp-GVzgFOIB4_Ta6Z-D-GF0Thq7Ekfvfw?e=ZzSIjA

Comparing OOP and DOP for video games
Annexes

 - 84 -

12. Annexes

12.1. Annex A: Propuesta de proyecto

Nombre alumno: Daniel Muñoz Muñoz

Titulación: Grado en Diseño y Desarrollo de Videojuegos

Curso académico: 2022 - 2023

1. TÍTULO DEL PROYECTO

Comparing Object Oriented Programming (OOP) and Data Oriented Programming (DOP) for video games.

2. DESCRIPCIÓN Y JUSTIFICACIÓN DEL TEMA A TRATAR

El proyecto consiste en estudiar y comparar, en el contexto del motor comercial Unity, la aplicación al diseño

y desarrollo de videojuegos de:

- Programación Orientada a Objectos

- Programación Orientada a Datos

Con tal objetivo, además, el proyecto incluye dos prototipos de un mismo videojuego perteneciente al género

bullet hell, utilizados para llevar a cabo el estudio y comparación descritos.

3. OBJETIVOS DEL PROYECTO

Los objetivos del proyecto son:

• Estudio del arte sobre OOP en la actualidad.

• Estudio del arte sobre DOP enfocado en el paquete de Unity Data Oriented Technology Stack

(DOTS) en la actualidad.

• Diseño y desarrollo de un vertical slice de un bullet hell mediante la aplicación de OOP.

• Realización de un vertical slice equivalente diseñado mediante DOP, utilizando DOTS.

• Comparación de ambos prototipos a nivel de consumo de recursos y rendimiento.

• Recopilación de datos obtenidos mediante la comparación y posterior análisis de resultados.

4. METODOLOGÍA

La metodología a usar se desarrollará en la primera reunión con el director del proyecto.

5. PLANIFICACIÓN DE TAREAS

Las tareas quedan predefinidas en los objetivos. Se fijarán tareas concretas para alcanzarlas durante el

desarrollo del proyecto.

6. OBSERVACIONES ADICIONALES

El director del proyecto será Daniel Blasco Latorre.

Comparing OOP and DOP for video games
Annexes

 - 85 -

12.2. Annex B: Meetings record

Here is the record of formal meetings between Daniel Blasco (research tutor) and me, Daniel

Muñoz. We had talks around the university campus and emails to speed things up, only setting

meetings for important milestones or planning.

1. Date: 10th of November, 2022. Type: Online. Place: Teams

We set the bases for the project, expectations, general deadlines, and the workflow to follow.

We discussed the implications of working with a developing technology and to try and aim

the research as close to a research paper as it was possible while following the guidelines.

2. Date: 17th of February, 2023. Type: In person. Place: USJ

We talked about progress so far, state of the art, and how the technology had changed over

the months since the last meeting. We set guidelines for the color scheme to try and follow

when doing the schemes, the diagrams needed to explain things adequately, the extra work

needed that might not be directly in this research but could help, and some general guidelines

for writing like subsections and overall structure.

3. Date: 11th of May, 2023. Type: Online. Place: Teams

With the prototype well started and the technology almost ready to be fully used, we talked

about the implementation details like the bullet patterns and what they would need to make

them as close to a bullet hell style of game as well as some possible figures to showcase

those implementations.

4. Date: 19th of June, 2023. Type: Online. Place: Teams

With the prototype fully finished, we talked about some key components of the research, like

data availability, research position in time, legibility of the sections, showing the results, and

the few sections that still needed to be finished.

5. Date: 23rd of June 2023. Type: Online. Place: Teams

With the research document needing the last touches, we talked about the little things to

add, like new documents, possible references that could support some sections, and the latest

version of the technology, as the day before, there had been an important event at Unity that

gave more information about the tools used in this research (ECS).

Comparing OOP and DOP for video games
Annexes

 - 86 -

12.3. Annex C

12.3.1. Data worksheet

Tables showing the representation of data in Data Oriented Design structures.

Comparing OOP and DOP for video games
Annexes

 - 87 -

12.4. Annex D

12.4.1. Time description per script

A bubble map generated by WakaTime shows the time taken to develop each script of the

researches prototype:

A high-resolution .svg file of the bubble map can be found at this link for a more in-depth look.

https://usanjorge-my.sharepoint.com/:u:/g/personal/alu_107827_usj_es/ESEJgg-KTn1KmxhRgkmg_eoBccltcBkeflFzzO32JImvMA?e=cCI2VD

Comparing OOP and DOP for video games
Annexes

 - 88 -

12.5. Annex E

12.5.1. Gallery

Comparing OOP and DOP for video games
Annexes

 - 89 -

Comparing OOP and DOP for video games
Annexes

 - 90 -

12.6. Annex F

12.6.1. Data Collection: Unity’s profiler

Here, Unity’s profiler can be seen running while the build generates the specific behavior to

record, in this case, shooting. When 300 frames have passed since the goal was reached, the

build is stopped, and calculations are taken from the profiler along 100 frames to get an average

metric of the studied case. The first pair of images are from the Object Oriented Design, and the

second pair is from the Data Oriented Design.

Comparing OOP and DOP for video games
Annexes

 - 91 -

		2023-06-26T23:23:30+0200
	MUÑOZ MUÑOZ DANIEL - 49044074R

